一,无重复字符的最长字串
3. 无重复字符的最长子串 - 力扣(LeetCode)
1,滑动窗口
我们先用一个例子考虑如何在较优的时间复杂度内通过本题。
我们不妨以示例一中的字符串 abcabcbb 为例,找出从每一个字符开始的,不包含重复字符的最长子串,那么其中最长的那个字符串即为答案。对于示例一中的字符串,我们列举出这些结果,其中括号中表示选中的字符以及最长的字符串:
以 (a)bcabcbb 开始的最长字符串为 (abc)abcbb;
以 a(b)cabcbb 开始的最长字符串为 a(bca)bcbb;
以 ab(c)abcbb 开始的最长字符串为 ab(cab)cbb;
以 abc(a)bcbb 开始的最长字符串为 abc(abc)bb;
以 abca(b)cbb 开始的最长字符串为 abca(bc)bb;
以abcab(c)bb 开始的最长字符串为 abcab(cb)b;
以abcabc(b)b 开始的最长字符串为 abcabc(b)b;
以abcabcb(b) 开始的最长字符串为abcabcb(b)。
发现了什么?如果我们依次递增地枚举子串的起始位置,那么子串的结束位置也是递增的!这里的原因在于,假设我们选择字符串中的第k 个字符作为起始位置,并且得到了不包含重复字符的最长子串的结束位置为 r_k 。那么当我们选择第k+1 个字符作为起始位置时,首先从 k+1 到 r_k的字符显然是不重复的,并且由于少了原本的第 k 个字符,我们可以尝试继续增大 r_k,直到右侧出现了重复字符为止。
这样一来,我们就可以使用「滑动窗口」来解决这个问题了:
我们使用两个指针表示字符串中的某个子串(或窗口)的左右边界,其中左指针代表着上文中「枚举子串的起始位置」,而右指针即为上文中的 r_k;
在每一步的操作中,我们会将左指针向右移动一格,表示 我们开始枚举下一个字符作为起始位置,然后我们可以不断地向右移动右指针,但需要保证这两个指针对应的子串中没有重复的字符。在移动结束后,这个子串就对应着 以左指针开始的,不包含重复字符的最长子串。我们记录下这个子串的长度;
在枚举结束后,我们找到的最长的子串的长度即为答案。
判断重复字符
在上面的流程中,我们还需要使用一种数据结构来判断 是否有重复的字符,常用的数据结构为哈希集合(即 C++ 中的 std::unordered_set,Java 中的 HashSet,Python 中的 set, JavaScript 中的 Set)。在左指针向右移动的时候,我们从哈希集合中移除一个字符,在右指针向右移动的时候,我们往哈希集合中添加一个字符。
至此,我们就完美解决了本题。
class Solution { public: int lengthOfLongestSubstring(string s) { // 哈希集合,记录每个字符是否出现过 unordered_set<char> occ; int n = s.size(); // 右指针,初始值为 -1,相当于我们在字符串的左边界的左侧,还没有开始移动 int rk = -1, ans = 0; // 枚举左指针的位置,初始值隐性地表示为 -1 for (int i = 0; i < n; ++i) { if (i != 0) { // 左指针向右移动一格,移除一个字符 occ.erase(s[i - 1]); } while (rk + 1 < n && !occ.count(s[rk + 1])) { // 不断地移动右指针 occ.insert(s[rk + 1]); ++rk; } // 第 i 到 rk 个字符是一个极长的无重复字符子串 ans = max(ans, rk - i + 1); } return ans; } };
复杂度分析
时间复杂度:O(N),其中 N 是字符串的长度。左指针和右指针分别会遍历整个字符串一次。
空间复杂度:O(∣Σ∣),其中 Σ 表示字符集(即字符串中可以出现的字符),∣Σ∣ 表示字符集的大小。在本题中没有明确说明字符集,因此可以默认为所有 ASCII 码在 [0,128) 内的字符,即 ∣Σ∣=128。我们需要用到哈希集合来存储出现过的字符,而字符最多有 ∣Σ∣ 个,因此空间复杂度为 O(∣Σ∣)。
二,字符串的排列
567. 字符串的排列 - 力扣(LeetCode)
https://leetcode.cn/problems/permutation-in-string/?plan=algorithms&plan_progress=gzwnnxs
1,滑动窗口
由于排列不会改变字符串中每个字符的个数,所以只有当两个字符串每个字符的个数均相等时,一个字符串才是另一个字符串的排列。
根据这一性质,记 s_1的长度为 n,我们可以遍历 s_2中的每个长度为 nn 的子串,判断子串和 s_1中每个字符的个数是否相等,若相等则说明该子串是 s_1的一个排列。
使用两个数组 cnt 1和 cnt 2,cnt 1统计 s_1中各个字符的个数,cnt 2统计当前遍历的子串中各个字符的个数。
由于需要遍历的子串长度均为 n,我们可以使用一个固定长度为 nn 的滑动窗口来维护 cnt 2:滑动窗口每向右滑动一次,就多统计一次进入窗口的字符,少统计一次离开窗口的字符。然后,判断 cnt 1是否与cnt 2相等,若相等则意味着 s_1的排列之一是 s_2的子串。
class Solution { public: bool checkInclusion(string s1, string s2) { int n = s1.length(), m = s2.length(); if (n > m) { return false; } vector<int> cnt1(26), cnt2(26); for (int i = 0; i < n; ++i) { ++cnt1[s1[i] - 'a']; ++cnt2[s2[i] - 'a']; } if (cnt1 == cnt2) { return true; } for (int i = n; i < m; ++i) { ++cnt2[s2[i] - 'a']; --cnt2[s2[i - n] - 'a']; if (cnt1 == cnt2) { return true; } } return false; } };
优化:
注意到每次窗口滑动时,只统计了一进一出两个字符,却比较了整个 cnt 1和 cnt 2数组。
从这个角度出发,我们可以用一个变量 diff 来记录 cnt 1与 cnt 2的不同值的个数,这样判断 cnt 1和 cnt 2是否相等就转换成了判断 diff 是否为 0.
每次窗口滑动,记一进一出两个字符为 x 和 y.
若 x=y 则对 cnt 2无影响,可以直接跳过。
若 x !=y,对于字符 x,在修改 cnt 2之前若有 cnt 2[x]=cnt 1[x],则将 \textit{diff}diff 加一;在修改 cnt 2之后若有 cnt 2[x]=cnt 1[x],则将 diff 减一。字符 y 同理。
此外,为简化上述逻辑,我们可以只用一个数组cnt,其中 cnt[x]=cnt 2[x]−cnt 1[x],将 cnt 1[x] 与 cnt 2[x] 的比较替换成 cnt[x] 与 0 的比较。
class Solution { public: bool checkInclusion(string s1, string s2) { int n = s1.length(), m = s2.length(); if (n > m) { return false; } vector<int> cnt(26); for (int i = 0; i < n; ++i) { --cnt[s1[i] - 'a']; ++cnt[s2[i] - 'a']; } int diff = 0; for (int c: cnt) { if (c != 0) { ++diff; } } if (diff == 0) { return true; } for (int i = n; i < m; ++i) { int x = s2[i] - 'a', y = s2[i - n] - 'a'; if (x == y) { continue; } if (cnt[x] == 0) { ++diff; } ++cnt[x]; if (cnt[x] == 0) { --diff; } if (cnt[y] == 0) { ++diff; } --cnt[y]; if (cnt[y] == 0) { --diff; } if (diff == 0) { return true; } } return false; } };
复杂度分析
时间复杂度:O(n+m+∣Σ∣),其中 n 是字符串 s_1的长度,m 是字符串 s_2的长度,Σ 是字符集,这道题中的字符集是小写字母,∣Σ∣=26。
空间复杂度:O(∣Σ∣)。
2,双指针
回顾方法一的思路,我们在保证区间长度为 n 的情况下,去考察是否存在一个区间使得 cnt 的值全为 0。
反过来,还可以在保证cnt 的值不为正的情况下,去考察是否存在一个区间,其长度恰好为 n。
初始时,仅统计 s_1中的字符,则 cnt 的值均不为正,且元素值之和为 n。
然后用两个指针 left 和 right 表示考察的区间[left,right]。right 每向右移动一次,就统计一次进入区间的字符 x。为保证 cnt 的值不为正,若此时 cnt[x]>0,则向右移动左指针,减少离开区间的字符的 cnt 值直到 cnt[x]≤0。
注意到[left,right] 的长度每增加 1,cnt 的元素值之和就增加 1。当 [left,right] 的长度恰好为 n 时,就意味着 cnt 的元素值之和为 0。由于cnt 的值不为正,元素值之和为 0 就意味着所有元素均为 0,这样我们就找到了一个目标子串。
class Solution { public: bool checkInclusion(string s1, string s2) { int n = s1.length(), m = s2.length(); if (n > m) { return false; } vector<int> cnt(26); for (int i = 0; i < n; ++i) { --cnt[s1[i] - 'a']; } int left = 0; for (int right = 0; right < m; ++right) { int x = s2[right] - 'a'; ++cnt[x]; while (cnt[x] > 0) { --cnt[s2[left] - 'a']; ++left; } if (right - left + 1 == n) { return true; } } return false; } };
复杂度分析
时间复杂度:O(n+m+∣Σ∣)。创建 \textit{cnt}cnt 需要 O(|\Sigma|)O(∣Σ∣) 的时间。遍历 s_1需要 O(n) 的时间。双指针遍历 s_2时,由于 left 和 right 都只会向右移动,故这一部分需要 O(m) 的时间。
空间复杂度:O(∣Σ∣)。