盘一盘!实时自动驾驶车辆定位技术都有哪些?(视觉/Lidar/多传感器数据融合)(下)

简介: 与基于激光雷达的定位相比,基于视觉和数据融合的定位技术在提高精度方面的潜力约为2–5倍。基于激光雷达和视觉的定位可以通过提高图像配准方法的效率来降低计算复杂性。与基于激光雷达和视觉的定位相比,基于数据融合的定位可以实现更好的实时性能,因为每个独立传感器不需要开发复杂的算法来实现其最佳定位潜力。V2X技术可以提高定位鲁棒性。最后,讨论了基于定量比较结果的AVs定位的潜在解决方案和未来方向。

5基于V2X的定位



基于V2V的定位


基于V2V的定位不要求车辆配备高精度传感器,以实现VANET下的精确位置。相反,它可以通过融合来自其他连接车辆的粗略位姿信息来实现合理的位置精度[94]。然而,其缺点是道路上参与车辆的分布不足或不均匀可能导致定位精度不足[95],[96]。

Liu等人[15]提出了一种基于与其他车辆共享GPS伪距离测量值的加权最小二乘-双差法来计算车辆间距离。他们使用分布式位置估计算法来融合共享数据,实现了约4米的定位精度。该解决方案减少了随机噪声的影响,并提高了计算车辆间距离的准确性。参考文献[97]提出使用贝叶斯方法来融合来自其他车辆的目标车辆GPS位置和车辆间距离的GPS位置信息,以进行车辆定位。该方法可以显著降低定位不确定性。为了消除参与车辆需要预定义动态运动模型来实现数据融合的挑战,参考文献[98]计算了关于车辆当前位置的置信度,这是一种可以推断车辆位置并在VANET中传播的概率。然后,他们使用到达角度和TOA技术来测量车辆间距离,从而显示相邻车辆的相对位置。最后,通过计算相邻位置的权重和来估计车辆位置;位置包括相对位置和信念。该方法的位置精度约为1.95m,但刷新率高达1.4s(7辆车接入网络)。其他相关算法[99]-[103]可以参考具体论文。


基于V2X的定位


基于V2I的定位基于附近基础设施的位置推断车辆位置。它可以实现准确、实时和鲁棒的定位性能。V2I技术的优点包括基础设施的高精度定位、独立于时间的稳定数据源和低计算复杂性。


参考文献[104]和[105]提出了基于磁标记的V2I定位。首先,在道路上以一定的间隔布置具有独特高斯极阵分布的磁标记,并将每个标记的位置和分布存储在数据库中。然后,检测每个标记,并在车辆行驶过程中计算其高斯分布。最后,通过在数据库中搜索该分布来确定车辆位置。该方法将失真的影响降至最低,并达到厘米级(<10cm)的定位精度。RFID技术,包括低成本的RFID读取器和RFID标签也用于定位。RFID标签部署在路面上,配备有RFID读取器的车辆可以根据标签确定位置[106],[107]。至于缺点,这些技术需要高密度的基础设施,并且容易受到基础设施堵塞的影响。其他相关算法[108]-[113]可以参考具体论文。


讨论


从V2X定位技术的回顾来看,V2V和V2I解决方案都不需要昂贵的专用硬件。对于基于V2V的解决方案,道路上参与车辆的充分和均匀分布可以提高定位精度和鲁棒性。然而,不断增加的车辆可能会导致较高的系统计算开销,但精度没有太大提高。用于在节点之间创建层次结构的高效集群架构可以在具有长距离的VANET下提供准确的V2V通信服务。通过对此类架构的进一步研究,可以克服车辆间准确信息交换的挑战。CMM方法可以提供一种潜在的方法来消除天线之间的多径误差,但传播信号延迟的问题仍然需要进一步解决。V2X系统的信号延迟建议在10ms内[3]。可以通过优化网络参数(例如,数据波特率、传播频率和天线功率等)来解决信号降级和丢包问题,之前的调查已经对此进行了详细讨论[8]。基于RFID的V2I系统可以实现成本高效的AV定位。然而,这些方法需要高密度的基础设施,并且容易受到基础设施堵塞的影响。基于RFID的技术非常适用于AV在固定路线上行驶的应用,例如动物园的观光巴士或港口的集装箱装卸车。优化RSU高度、传播角度和传输功率之间的关系可以确保信号强度和网络覆盖范围广,以实现基于RSU的V2I定位。尽管信号延迟仍需要进一步解决以提高定位精度。


6基于数据融合的定位



基于多传感器的数据融合定位


之前的讨论表明,没有独立的传感器能够满足AV定位的准确性、实时性和可靠性要求。多个传感器的数据融合显示出实现准确、实时和可靠的自我定位的巨大潜力。


参考文献[114]开发了一种交互式多模型(IMM)滤波器,该滤波器由车辆动力学模型和车辆运动学模型组成,以通过使用低成本传感器实现成本高效的AV定位。GPS数据和车内传感器(即车轮速度传感器和转向角传感器)数据用于该过滤器。IMM滤波器可以基于各种驾驶场景来权衡数据融合实现的适当模型。该方法可以在32位嵌入式处理器中实现合理的定位性能。参考文献[115]建议使用三个基于IMM的UKF构建模型,以融合低成本传感器数据,如GPS和惯性传感器。该模型减少了来自惯性传感器的大部分不确定噪声,预测并补偿了定位误差,并可以在GPS中断期间实现1.18米的位置精度。对于动态机动情况,如强加速、高速转弯以及启动和停止,Ndjeng等人[116]表明,使用低成本传感器(如IMU、里程计和GPS)的基于IMM的定位系统优于基于EKF的定位系统。他们通过实际实验得出结论,基于IMM的定位鲁棒性性能优于基于EKF的车辆动力学操纵的高可变性。其他相关算法[117]-[131]可以参考具体论文。


基于地图的数据融合定位


基于地图的数据融合技术基于多传感器测量,并通过添加地图信息来提高定位性能。例如,Suhr等人[132]提出将低成本传感器与数字地图融合,以提高实时性能。他们将车道和道路标记特征表示为一组关键点,并使用前视摄像头模块处理捕获的图像。该解决方案可以减少内存使用和计算开销;此外,其位置刷新率约为100Hz,位置精度约为0.5m。蔡等人[133]提出了一种数据驱动的运动模型,不使用惯性传感器来消除积分误差的挑战。他们通过使用高清地图校正了GPS位置和相机的横向距离,然后将这两种信息用作融合数据。与纯GPS定位相比,该方法的位置误差减少了1/3。Gruyer等人[134],[135]提出了一种基于精确数字地图、GPS、IMU和两个相机的地图辅助数据融合方法,以获得亚分米精度的AV横向位置。他们首先通过两个侧面摄像头估计了车辆到车辆左右两侧道路标记的距离。然后,他们使用EKF通过GPS和IMU传感器测量来估计车辆位置。最后,他们将先前估计的车辆位置和通过基于点到线段的地图匹配算法获得的匹配线段位置相结合,以进一步提高定位精度和可靠性。其他相关算法[136]-[139]可以参考具体论文。


讨论


分析表明,基于低成本多传感器(如GPS、IMU、摄像头和里程计等)数据融合的技术可以为自动驾驶车辆提供一种经济高效的商业定位解决方案。融合GPS测量的多传感器数据融合技术仍然需要解决GPS完整性问题。基于IMM的融合方法可以减少来自惯性传感器的大部分不确定噪声,并在GPS中断或GPS信号阻塞期间提高定位精度和鲁棒性。然而,IMM的定位误差仍然达到米级。通过将缺陷数据建模为区间,区间方法可以实现具有高完整性和一致性的车辆定位。该方法的定位RSSE和更新时间可以分别为约15cm、约170ms。间隔技术可以为市场提供一种潜在的基于融合的定位解决方案。然而,在不同复杂环境中的整体定位性能仍需要进一步验证,以实现完全AVs。与地图融合的协作方法还可以获得准确和鲁棒的定位解决方案。例如,参考文献[136]显示了一种协作方法,该方法可以通过与多传感器(例如GPS、相机等)、SLAM和地图融合来增强定位精度和鲁棒性。此外,还可以关注不同传感器的故障检测和识别技术,以确保更稳健的AV定位。综上所述,上述讨论表明,基于数据融合的技术具有在经济性、实时性、准确性和鲁棒性之间权衡商用自动驾驶车辆定位性能的巨大潜力。


7精度和实时性能讨论



定位性能评估的相关工作


实时、准确和稳健的AV定位是确保安全驾驶的关键要素之一。不同定位技术的性能比较可以指导AV系统的传感器选择和研究目的。已经发表了许多与不同定位算法的准确性和鲁棒性性能比较相关的工作。Zhang等人[138]从理论上分析了RI-EKF-SLAM的收敛性和一致性,并将其定位性能与SO(3)-EKF-SLAM进行了比较。Zhang等人通过一维、二维和三维模拟比较了基于RI-EKF的SLAM和基于优化的SLAM的准确性和一致性性能。[140]。此外,Mourllion等人[141]在车辆定位的预测步骤中展示了卡尔曼滤波器变量的性能,例如EKF、UKF以及一阶和二阶的除法差(DD1和DD2)。Gruyer等人[142]使用基于精度和滤波器不确定性和一致性的标准以及多传感器实验测量,比较了这些KF变体的整体定位过程(预测和校正步骤)。Ndjeng等人[116]评估了动态机动场景下基于IMM和基于EKF的低成本定位系统的准确性和鲁棒性性能。到目前为止,很少有工作对定位实时性能进行了比较。参考文献[6]和[149]比较了基于CPU和GPU平台的同一解决方案的定位时间。参考文献[143]在CPU和GPU上运行滤波算法,以比较它们的执行时间。然而,上述实时性能比较仅在各种平台上运行相同的算法。在各种硬件平台和编程语言上展示了不同定位解决方案的实时性能。此外,整个解决方案的定位时间受数据提取和原始搜索步骤、核心定位算法执行、地图存储和更新(如果使用了地图)的影响。为了在没有实际测试的情况下对不同解决方案进行快速实时性能比较,首先,论文假设不同研究论文中显示的定位时间与完整的定位解决方案有关,而不仅仅是算法。其次假设每个解决方案中运行的代码都充分利用了所有计算源。因此,基于不同的硬件计算能力和编程语言执行效率,可以将不同解决方案的本地化时间转换为相同的基准。然后,可以近似地和定量地比较不同解决方案的实时性能。


等效比较法


对不同定位技术的讨论表明,AV定位主要依赖CPU和GPU作为硬件平台,MATLAB和C/C++作为编程语言。众所周知,不同的硬件具有不同的计算能力。例如,当使用滤波算法处理激光雷达3D点云数据时,GPU比CPU快52倍[143]。对于编程语言来说,C/C++是一种编译语言,在执行之前被翻译成机器语言。MATLAB是一种解释语言,其中每行代码都必须在执行期间由解释器读取和解释,这使得它比编译语言要慢得多[144],[145]。因此,在比较不同定位技术的实时性能时,必须考虑使用硬件和编程语言的因素。


作为第一步,必须确定CPU/GPU系列之间以及CPU和GPU之间的定位算法操作能力(LAOC)等效转换系数。CPU/GPU系列中的所有CPU/GPU都源自不同定位技术的硬件平台。在本文中,使用单精度浮点(SPFP)峰值性能来确定GPU/CPU系列的LAOC等效转换关系,因为定位算法通常涉及SPFP操作。在CPU系列中,SPEC CPU®2006基准测试[146]旨在比较不同CPU在硬件级别的计算密集型性能。这取决于处理器、内存结构和总线的因素。该基准可以全面评估和比较不同CPU的硬件性能[147]。因此,CPU系列之间的LAOC等效转换关系基于SPECfp2006[148],其中给出了每秒CPU相对峰值浮点运算(FLOPS)性能。对于标准化,本文所示相对峰值FLOPS性能的最小值作为基线,其LAOC等效转换系数确定为image.png。CPU系列之间的LAOC等效转换系数通过使用,如表III所示。

640.png


对于GPU系列,影响FLOPS功能的因素包括频率f、内核数量N和每个内核FMA的每个周期的单精度融合乘加运算(FMA)。FMA可以在所选GPU的官方网站中找到。理论上的单精度峰值性能可以通过使用以下方程来估计。

640.png

对于相同的数据传输和复制,image.png可以表示GPU的实际SPFP计算能力,GPU系列之间的转换关系基于image.png。对于归一化,论文将本文中给出的最小FLOPS峰值性能定义为基线,其LAOC等效转换因子为image.png。GPU系列之间的LAOC等效转化因子通过使用image.pnga计算,如表IV所示:

640.png


对于CPU和GPU之间的LAOC等效关系,Charmette等人[6],[149]在比较定位应用中的CPU和GPU计算性能方面进行了许多有代表性的工作。在本文中,CPU和GPU之间的转换因子基于他们的最新研究结论[6]。结论表明,同一种方法GPU的定位时间大约是CPU的45倍。作者提到,双核CPU中只有一个内核用于定位。因此,论文认为[6]中CPU的峰值FLOPS性能是相同双核CPU的一半,如表III所示。[6]中CPU和GPU之间的LAOC等效转换系数确定为image.png


论文考虑将C/C++作为编程语言基准,其LAOC等效转换因子设置为image.png。MATLAB设置为image.png


最后论文选择基准峰值FLOPS性能作为硬件基准,选择C/C++作为编程语言基准。基于不同硬件和编程语言的定位时间必须转移到此基准进行比较。转换方法由以下等式给出。

640.png


方法验证


在本文中,参考文献[29]用于评估所提出的基于LAOC的等效比较方法。参考文献[29]比较了基于CPU和GPU平台的相同解决方案的定位时间。CPU和GPU的TR和TC、硬件和软件的LAOC等效转换因子h和s分别列于表V中。表V显示,转换前定位时间的差异是由于硬件平台(CPU和GPU)不同造成的。转换后的定位时间大大增加,因为硬件基准的峰值FLOPS性能最低,编程语言也相同。此外,转换结果表明,,这意味着转换后基于CPU和GPU的定位时间相似。这是因为解决方案A和解决方案B都是相同的解决方案,但在不同的硬件平台中实现。因此,基于LAOC的等效比较方法是合理的,可以用于近似和定量地比较不同的定位解决方案。表VI总结了使用方程(2)计算的不同定位技术的相对计算复杂性。

640.png


讨论


1)准确度和实时性能:本节定量比较了上述所有定位技术的计算复杂性和位置误差。图2显示,在基于激光雷达的定位中,基于3D地图的方法在精度方面优于基于2D地图的方法,因为它包含丰富的特征信息。然而,基于3D地图的技术增加了内存使用量和计算负载,导致算法的计算复杂度较高。此外,尽管基于2D地图的技术之间的精度差异较小,但由于不同的方法,计算复杂性差异很大。例如,[29]中的2D GMM匹配技术的计算复杂度约为[42]中多层RANSAC配准和2D地图匹配方法的组合的2000倍。与基于激光雷达的定位技术相比,基于雷达和超声波的定位技术具有更低的计算复杂性,因为它们发射低密度电磁波。雷达定位的计算复杂性和位置误差介于激光雷达和超声波定位之间;尽管粒子群优化和网格地图匹配方法相结合实现了合理的定位性能,但该方法需要严格的传感器部署。由于超声波传感器的低精度,基于超声波的技术位置精度的位置精度约为10m。

640.png

图3显示,对于开阔天空中的纯GPS定位,GPS接收机可以输出频率为1Hz、精度为2–10m的位置信息,而不受车辆操作系统的限制。与其他基于传感器的定位相比,基于IMU的技术由于其快速的位置刷新率,可以实现最低的计算复杂度,但其累积误差仅在10分钟的驾驶时间内导致约1m的定位误差。在基于视觉的定位方面,图像中包含的丰富环境信息使其计算复杂性与基于激光雷达的方法相似。然而,由于图像质量和镜头失真的挑战,视觉无法准确测量周围物体的范围。因此,其定位精度低于基于激光雷达的技术。此外,它的计算复杂度随着参考地图的维数而降低,但其位置精度变化不大。

640.png

如图4所示,与基于激光雷达和视觉的定位相比,基于V2X的定位的实时性能更好,但由于信号延迟或参与节点不足的挑战,其精度不令人满意。

640.png

图5显示,与其他基于传感器的定位相比,基于数据融合的技术可以在精度和实时性能方面实现平衡。这是因为它利用每个传感器的优点来减少其他传感器缺点的影响,并且每个独立传感器不需要开发复杂的算法来实现其最佳定位潜力。

640.png

总之,不同的基于传感器的定位技术的计算复杂性最大相差约10^7倍,而位置误差相差约100倍。表VII总结了不同传感器技术在精度和实时性能方面的性能。

640.png

2)应用场景:满足AV应用安全驾驶要求的精度和实时性能分别是位置误差和位置输出频率,要求分别小于30cm[3]和100ms[151]。分析表明,基于激光雷达、视觉和数据融合的定位具有满足精度性能的潜力。基于激光雷达和视觉的技术使用强大的处理器,如高性能GPU和多核CPU,可以满足实时性能要求。基于数据融合的技术融合多个低成本传感器(例如,相机、GPS、IMU和车载传感器)的计算复杂性低于基于激光雷达和视觉的技术。总之,融合技术在实现经济高效的自主定位方面具有相当大的潜力。


此外,表VII还可以指导不同场景下的定位解决方案选择。对于行人和车辆高度参与交通的城市环境,与其他常见驾驶环境相比,定位精度和实时要求最高。尽管基于激光雷达、视觉和基于激光雷达或视觉的数据融合技术可能会增加硬件部署成本以实现实时性能,但这些技术可以获得精确的定位精度。高速公路和郊区场景中,AV周围的行人和车辆较少。这些场景中的精度要求可能低于城市环境中的精度。然而,AVs需要远距离检测传感器来感知周围的障碍物和高频位置输出,以满足高速驾驶。因此,具有远距离传感器感知和实时性能的定位技术可能是一种潜在的选择,例如基于数据融合、雷达和V2V的技术。由于专用车道上的障碍物较少,且用作城市巴士或观光巴士的AVs行驶速度较低,因此准确度和实时性要求低于上述情况。在这种情况下,低成本的数据融合、V2I和基于雷达的定位技术可能是首选方案。在自动停车场景中,检测距离和定位实时性能不需要像上述应用中那样高。因此,低成本的超声波和雷达技术可能是最有前途的选择。


8结论



本文综述了基于主动传感器、被动传感器、V2X和数据融合的最新自定位技术,并定量比较了它们的精度和计算复杂性性能。与1D地图和3D地图匹配方法相比,基于激光雷达的2D地图匹配方法显示了在成本、准确性、实时性和鲁棒性之间平衡商用AVs定位性能的最重要前景。然而,基于激光雷达的定位比其他基于传感器的定位(如基于雷达的定位、基于视觉的定位和基于V2X的定位)更昂贵。此外,基于激光雷达的(2D)解决方案的实时性能可能受到系统计算能力的限制,并且需要强大的CPU/GPU加速,这会增加AV的部署成本。需要进一步改进基于激光雷达的(2D)解决方案,以使用低成本处理器缩短定位更新时间。基于无源传感器的定位解决方案在部署成本低方面显示出显著优势。挑战在于,对于典型的无源传感器,例如基于GPS的传感器和IMU,定位的完整性和一致性使得该技术仍然难以应用于AV。基于视觉的定位可以实现高精度的车辆位置,但可能需要GPU加速来处理大量图像数据。相机在照明不足或恶劣天气下的可靠性也需要进一步解决。V2X技术可以在VANET的广泛信号强度和网络覆盖范围内提供成本高效的AV定位解决方案。基于RFID的技术非常适合固定路线的AV应用,例如动物园的观光巴士、港口的集装箱装卸车。然而,V2X系统中的信号延迟和数据包丢失问题需要进一步优化,以提高定位精度和一致性。与其他基于传感器的定位解决方案相比,基于数据融合的技术在权衡商用AV的经济性、实时性、准确性和鲁棒性的定位性能方面具有最大的潜力。例如,基于区间理论的技术可以通过融合低成本传感器数据(例如GPS、IMU和里程计)来实现具有高完整性和一致性的车辆定位。在商业化之前,在不同的变化环境和各种驾驶条件(如长途驾驶)下对该技术进行进一步研究和验证至关重要。

此外,实时性和准确性性能之间的比较分析表明,不同基于传感器的定位技术的位置误差最大相差约100倍。基于激光雷达、视觉和数据融合的定位技术有可能满足AV安全驾驶的精度要求(小于30cm)。与其他基于传感器的技术相比,基于激光雷达的技术实现了最佳的定位精度,并且不同基于激光雷达方法实现的位置精度相似。此外,高维地图匹配或基于强度的匹配方法可以将位置误差减少约2-3倍,但可以将计算复杂性增加约20-2000倍。与基于激光雷达的定位相比,基于视觉和数据融合的定位在提高位置精度方面的潜力约为2–5倍。就实时性能而言,不同基于传感器的技术之间的计算复杂度最大变化约10^7倍。与精度相比,它有很大的改进空间。IMU、超声波、多传感器融合和基于雷达的自定位可以通过低成本处理器满足安全驾驶的实时性能要求(<100ms),而基于激光雷达和视觉的定位可以通过使用强大的处理器实现实时定位。然而,基于IMU、超声波和雷达的技术定位精度不足,通常被用作AV中的辅助定位解决方案。与不同的方法相比,基于激光雷达的技术具有最高的计算复杂性和大约2000倍的最大差异。重点改进激光雷达图像配准方法可以提高基于激光雷达的技术的实时定位性能。基于视觉的定位的计算复杂性与基于激光雷达的方法相似,与不同方法相比,其最大差异约为1000倍。提高捕获图像关联的效率和准确性可以提高准确性和实时性能。此外,匹配低维特征可以降低计算复杂性,但对精度没有实质性影响。与基于激光雷达和视觉的定位相比,基于数据融合的定位实现了更好的实时性能,因为每个独立传感器不需要开发复杂的算法来实现其最佳定位潜力。此外,它实现了准确度和实时性能之间的最佳平衡。总之,基于激光雷达、视觉和数据融合的技术在实时性能方面仍有很大提高。


讨论表明,没有一个传感器能够满足自动驾驶的所有定位要求。与其他基于单一传感器的技术相比,基于数据融合的技术将是实现AV成本高效自定位的研究重点。除了传统的融合信息源,如GPS和IMU,V2X将是一个有前途的解决方案,主要原因是它对光照和天气具有出色的鲁棒性。它具有广泛的检测范围(约300m),可以增加数据源并提高其稳定性。然而,精度、实时性能和鲁棒性之间的权衡仍需进一步研究。此外,未来的研究需要集中于传感器故障检测和识别技术以及缺陷数据建模方法,以确保稳健和一致的AV定位。随着新的新兴方法的兴起,如机器学习和深度学习。基于地图的定位性能可以得到增强,因为人工智能算法具有自动学习特征的巨大潜力。我们让读者参考Fayyad等人最近的调查[152],该调查对基于深度学习的定位进行了全面综述。


9参考



[1] Real-Time Performance-Focused Localization Techniques for Autonomous Vehicle: A Review


原文首发微信公众号【自动驾驶之心】:一个专注自动驾驶与AI的社区(https://mp.weixin.qq.com/s/NK-0tfm_5KxmOfFHpK5mBA

相关实践学习
部署Stable Diffusion玩转AI绘画(GPU云服务器)
本实验通过在ECS上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。
相关文章
|
定位技术
高分、环境等国产遥感卫星影像的获取方法
本文介绍高分(GF)与环境(HJ)等主要国产卫星遥感数据的免费下载(包括批量下载)方法~
718 2
高分、环境等国产遥感卫星影像的获取方法
|
智慧交通
智慧交通day02-车流量检测实现05:小车匀加速案例
智慧交通day02-车流量检测实现05:小车匀加速案例
85 0
|
机器学习/深度学习 编解码 人工智能
3D车道线检测能否成为自动驾驶的核心?盘一盘近三年的SOTA论文!(下)
车道线检测是自动驾驶与计算机视觉领域中的重要研究方向,3D车道线任务更是近几年的研究热点,下面为大家盘点下近三年的一些工作!
3D车道线检测能否成为自动驾驶的核心?盘一盘近三年的SOTA论文!(下)
|
机器学习/深度学习 人工智能 自动驾驶
3D车道线检测能否成为自动驾驶的核心?盘一盘近三年的SOTA论文!(上)
车道线检测是自动驾驶与计算机视觉领域中的重要研究方向,3D车道线任务更是近几年的研究热点,下面为大家盘点下近三年的一些工作!
3D车道线检测能否成为自动驾驶的核心?盘一盘近三年的SOTA论文!(上)
|
传感器 编解码 运维
盘一盘!实时自动驾驶车辆定位技术都有哪些?(视觉/Lidar/多传感器数据融合)(上)
与基于激光雷达的定位相比,基于视觉和数据融合的定位技术在提高精度方面的潜力约为2–5倍。基于激光雷达和视觉的定位可以通过提高图像配准方法的效率来降低计算复杂性。与基于激光雷达和视觉的定位相比,基于数据融合的定位可以实现更好的实时性能,因为每个独立传感器不需要开发复杂的算法来实现其最佳定位潜力。V2X技术可以提高定位鲁棒性。最后,讨论了基于定量比较结果的AVs定位的潜在解决方案和未来方向。
盘一盘!实时自动驾驶车辆定位技术都有哪些?(视觉/Lidar/多传感器数据融合)(上)
|
传感器 机器学习/深度学习 人工智能
一文尽览 | 全景/鱼眼相机低速自动驾驶的近距离感知(识别+重建+定位+工程化)(上)
本文的工作部分受到了Malik等人在[5]中的工作的启发。这项工作的作者提出,计算机视觉的核心问题是重建、识别和重组,他们称之为计算机视觉的3R。在此,论文建议将计算机视觉的3R扩展并专门化为自动驾驶计算机视觉的4R:重建、识别、重组和重新定位。
一文尽览 | 全景/鱼眼相机低速自动驾驶的近距离感知(识别+重建+定位+工程化)(上)
|
机器学习/深度学习 传感器 存储
一文尽览 | 全景/鱼眼相机低速自动驾驶的近距离感知(识别+重建+定位+工程化)(下)
本文的工作部分受到了Malik等人在[5]中的工作的启发。这项工作的作者提出,计算机视觉的核心问题是重建、识别和重组,他们称之为计算机视觉的3R。在此,论文建议将计算机视觉的3R扩展并专门化为自动驾驶计算机视觉的4R:重建、识别、重组和重新定位。
一文尽览 | 全景/鱼眼相机低速自动驾驶的近距离感知(识别+重建+定位+工程化)(下)
Sooth打造新型智能头盔,通过传感器可实时检测各项身体指标
将多个嵌入式传感器和智能头盔相结合,配备一个集成的应用程序,以此来预测用户是否有中暑征兆。
292 0
|
物联网 定位技术
FindMy部署了超过45000个用于智能动物跟踪的Globalstar卫星物联网设备
FindMy最初成立是为了满足挪威的绵羊养殖者的需求,他们的羊群在高山上没有栅栏,经常跨越边界进入瑞典和芬兰。 现在,FindMy的声誉已享誉国际,拉丁美洲的牧场主信任FindMy来监视牛群。
496 0
FindMy部署了超过45000个用于智能动物跟踪的Globalstar卫星物联网设备
|
数据采集 边缘计算 自动驾驶
厘米级实时定位!自动驾驶梦之队跃上云端
在高级别辅助驾驶领域,高精地图的重要性不言而喻。深耕高精地图市场,面向整车厂、物流公司和互联网出行服务商提供“持续赋能”的动态服务,DeepMap高深智图就是其中的佼佼者。
1240 0