LSTM对比Bi-LSTM的电力负荷时间序列预测(Matlab)

简介: LSTM对比Bi-LSTM的电力负荷时间序列预测(Matlab)

  👨‍🎓个人主页:研学社的博客

💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

0 概述

1 电力负荷预测

2 滑动窗输入结构的构建

3 LSTM

4 Bi-LSTM

5 运行结果

6 Matlab代码实现

7 参考文献



0 概述

     本文使用LSTM和Bi-LSTM,以电力负荷预测为例对比了两者的预测性能,其中将电力负荷构造为滑动时间窗的形式作为网络输出输入,实现LSTM与Bi-LSTM网络的多输入单输出模型,相比于单输入单输出的模型有更高的准确性。本文的电力负荷滑动窗输入构建方式具有一定的参考价值。

1 电力负荷预测

     电力负荷预测是一种典型的时间序列回归预测任务。电力负荷预测是保证电力供需平衡的基础,并为电网、电源的规划建设以及电网企业、电网使用者的经营决策提供信息和依据。负荷预测分为长期、中期、短期和超短期负荷预测,预测对象包括系统负荷和母线负荷,由电网企业负责组织编制。大用户应根据有关规定,按时报送其主要接装容量和年、月用电量预测及日用电负荷变化过程。                          

image.gif

2 滑动窗输入结构的构建

     由于电力负荷具有很强的时间相关性,仅通过上一时刻的负荷预测下一时刻的负荷并不能有效的反应复杂的时间关系,同时也没有充分的利用历史负荷数据的全部信息。所以本文通过滑动时间窗技术将多个历史时间内的负荷情况组合起来,预测下一时刻的负荷情况,并不断向前移动,以完成全天内的负荷预测。具体的构造方法如下:

image.gif

       如上图所示,在t时刻时黄色每一个小框都表示一个时间节点的输入数据,蓝色的小框表示输出数据,将3个黄色小框作为输入预测蓝色小框中的数据;而在t+1时刻,整体往前移动一个时间节点,以此不断前进,直到预测完全体的数据。

3 LSTM

     传统RNN网络由于结构存在固有缺陷,在参数更新时会存在梯度消失以及梯度爆炸的问题,导致长距离的历史信息丢失,进一步造成网络极难收敛,无法训练出理想的模型。LSTM作为一种改进的循环神经网络,在原有网络结构的基础上加入了细胞状态(cell state)的结构来控制全局信息的传输,并通过遗忘门,输入门,输出门三种门控单元控制细胞状态信息值的更新。LSTM在极大程度上缓解了传统RNN模型存在的长期依赖问题,减少了长距离历史信息的丢失,输出的预测结果更准确 。LSTM的具体模型如下:

image.gif

LSTM通过以下公式进行更新权值矩阵和偏置参数等网络信息:

                     

4 Bi-LSTM

    Bi-LSTM 神经⽹络结构模型分2个独⽴LSTM,输⼊序列分别以正序和逆序输⼊⾄2个LSTM神经⽹络进⾏特征提取,将2个输出向量(即提取后的特征向量)进⾏拼接后形成的词向量作为该词的最终特征表达。Bi-LSTM 的模型设计理念是使 t 时刻所获得特征数据同时拥有过去和将来之间的信息,实验证明,这种神经⽹络结构模型对⽂本特征提取效率和性能要优于单个 LSTM 结构模型。

image.gif

5 运行结果

    本文的数据集是一个包含60日的电力时间序列负荷数据,数据的颗粒度为15min,一天中共有96个点,使用前59日的数据进行训练,用最后一日的数据作为测试集进行负荷预测。滑动时间窗口大小设置为8,即过去两个小时内的负荷预测下一时刻的负荷。

image.gif

image.gif

image.gif

image.gif

image.gif

部分代码:

function [layer_lstm,layer_bilstm,options] = Net_definition(numFeatures,numResponses,numHiddenUnits,Train_number,dorp_rate)

%% LSTM

layer_lstm = [ ...

   sequenceInputLayer(numFeatures)

   lstmLayer(numHiddenUnits,'OutputMode','sequence')

   dropoutLayer(dorp_rate)

   fullyConnectedLayer(numResponses)

   regressionLayer];

%% BI-LSTM

layer_bilstm = [ ...

   sequenceInputLayer(numFeatures)

   lstmLayer(numHiddenUnits,'OutputMode','sequence')

   dropoutLayer(dorp_rate)

   fullyConnectedLayer(numResponses)

   regressionLayer];

%%

options = trainingOptions('adam', ...

   'MaxEpochs',Train_number, ...

   'GradientThreshold',1, ...

   'InitialLearnRate',0.005, ...

   'LearnRateSchedule','piecewise', ...

   'LearnRateDropPeriod',Train_number/2, ...

   'LearnRateDropFactor',0.2, ...

   'Verbose',0, ...

   'Plots','training-progress');

end

6 Matlab代码实现

链接:https://pan.baidu.com/s/1t26udZznmVm2TnxzPjq_Tg

提取码:ls3y --来自百度网盘超级会员V3的分享

7 参考文献

部分理论来源于网络,如有侵权请联系删除。

[1]李玉志,刘晓亮,邢方方,温国强,卢楠滟,何慧,焦润海.基于Bi-LSTM和特征关联性分析的日尖峰负荷预测[J].电网技术,2021,45(07):2719-2730.DOI:10.13335/j.1000-3673.pst.2020.1390.

相关文章
|
13天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化CNN-LSTM网络的数据分类识别算法matlab仿真
本项目展示了基于贝叶斯优化(BO)的CNN-LSTM网络在数据分类中的应用。通过MATLAB 2022a实现,优化前后效果对比明显。核心代码附带中文注释和操作视频,涵盖BO、CNN、LSTM理论,特别是BO优化CNN-LSTM网络的batchsize和学习率,显著提升模型性能。
|
23天前
|
机器学习/深度学习 算法 数据挖掘
基于GWO灰狼优化的GroupCNN分组卷积网络时间序列预测算法matlab仿真
本项目展示了基于分组卷积神经网络(GroupCNN)和灰狼优化(GWO)的时间序列回归预测算法。算法运行效果良好,无水印展示。使用Matlab2022a开发,提供完整代码及详细中文注释。GroupCNN通过分组卷积减少计算成本,GWO则优化超参数,提高预测性能。项目包含操作步骤视频,方便用户快速上手。
|
25天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于WOA鲸鱼优化的GroupCNN分组卷积网络时间序列预测算法matlab仿真
本项目展示了一种基于WOA优化的GroupCNN分组卷积网络时间序列预测算法。使用Matlab2022a开发,提供无水印运行效果预览及核心代码(含中文注释)。算法通过WOA优化网络结构与超参数,结合分组卷积技术,有效提升预测精度与效率。分组卷积减少了计算成本,而WOA则模拟鲸鱼捕食行为进行优化,适用于多种连续优化问题。
|
1月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于GA遗传优化的GroupCNN分组卷积网络时间序列预测算法matlab仿真
该算法结合了遗传算法(GA)与分组卷积神经网络(GroupCNN),利用GA优化GroupCNN的网络结构和超参数,提升时间序列预测精度与效率。遗传算法通过模拟自然选择过程中的选择、交叉和变异操作寻找最优解;分组卷积则有效减少了计算成本和参数数量。本项目使用MATLAB2022A实现,并提供完整代码及视频教程。注意:展示图含水印,完整程序运行无水印。
|
2月前
|
算法 数据可视化
基于SSA奇异谱分析算法的时间序列趋势线提取matlab仿真
奇异谱分析(SSA)是一种基于奇异值分解(SVD)和轨迹矩阵的非线性、非参数时间序列分析方法,适用于提取趋势、周期性和噪声成分。本项目使用MATLAB 2022a版本实现从强干扰序列中提取趋势线,并通过可视化展示了原时间序列与提取的趋势分量。代码实现了滑动窗口下的奇异值分解和分组重构,适用于非线性和非平稳时间序列分析。此方法在气候变化、金融市场和生物医学信号处理等领域有广泛应用。
111 19
|
1月前
|
机器学习/深度学习 自然语言处理 PyTorch
【机器学习】探索LSTM:深度学习领域的强大时间序列处理能力
【机器学习】探索LSTM:深度学习领域的强大时间序列处理能力
|
2月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于PSO粒子群优化的GroupCNN分组卷积网络时间序列预测算法matlab仿真
本项目展示了一种结合粒子群优化(PSO)与分组卷积神经网络(GroupCNN)的时间序列预测算法。该算法通过PSO寻找最优网络结构和超参数,提高预测准确性与效率。软件基于MATLAB 2022a,提供完整代码及详细中文注释,并附带操作步骤视频。分组卷积有效降低了计算成本,而PSO则智能调整网络参数。此方法特别适用于金融市场预测和天气预报等场景。
|
3月前
|
机器学习/深度学习 算法 数据挖掘
基于WOA优化的CNN-LSTM的时间序列回归预测matlab仿真
本项目采用MATLAB 2022a实现时间序列预测,利用CNN与LSTM结合的优势,并以鲸鱼优化算法(WOA)优化模型超参数。CNN提取时间序列的局部特征,LSTM处理长期依赖关系,而WOA确保参数最优配置以提高预测准确性。完整代码附带中文注释及操作指南,运行效果无水印展示。
|
2月前
|
机器学习/深度学习 算法 数据挖掘
基于GWO灰狼优化的CNN-LSTM的时间序列回归预测matlab仿真
本项目展示了一种结合灰狼优化(GWO)与深度学习模型(CNN和LSTM)的时间序列预测方法。GWO算法高效优化模型超参数,提升预测精度。CNN提取局部特征,LSTM处理长序列依赖,共同实现准确的未来数值预测。项目包括MATLAB 2022a环境下运行的完整代码及视频教程,代码内含详细中文注释,便于理解和操作。
|
3月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
174 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码

热门文章

最新文章