TensorFlow 的简化接口 Scikit Flow

简介:

Scikit Flow 详细介绍

Scikit Flow 是 TensorFlow 的简化接口,模仿 Scikit 学习,让用户可以在预测分析和数据挖掘中使用。

为什么使用 TensorFlow?

TensorFlow 提供构建各种不同类型机器学习应用的核心

会继续在分布式方向和常规管道机器中进行创新

为什么使用 Scikit Flow?

可以平滑的从单向机器学习 Scikit Learn 过渡到更开放的,可以构建不同类型的 ML 模型。用户可以通过 fit/predict 和切换到 TensorFlow APIs。

提供一系列的参考模型,方便与现有的代码集成。

Linear Classifier

import skflow
from sklearn import datasets, metrics
iris = datasets.load_iris()
classifier = skflow.TensorFlowLinearClassifier(n_classes=3)
classifier.fit(iris.data, iris.target)
score = metrics.accuracy_score(classifier.predict(iris.data), iris.target)
print("Accuracy: %f" % score)

Linear Regressor

import skflow
from sklearn import datasets, metrics, preprocessing

boston = datasets.load_boston()
X = preprocessing.StandardScaler().fit_transform(boston.data)
regressor = skflow.TensorFlowLinearRegressor()
regressor.fit(X, boston.target)
score = metrics.mean_squared_error(regressor.predict(X), boston.target)
print ("MSE: %f" % score)

Deep Neural Network

import skflow
from sklearn import datasets, metrics

iris = datasets.load_iris()
classifier = skflow.TensorFlowDNNClassifier(hidden_units=[10, 20, 10], n_classes=3)
classifier.fit(iris.data, iris.target)
score = metrics.accuracy_score(classifier.predict(iris.data), iris.target)
print("Accuracy: %f" % score)

Custom model

import skflow
from sklearn import datasets, metrics

iris = datasets.load_iris()

def my_model(X, y):
    """This is DNN with 10, 20, 10 hidden layers, and dropout of 0.5 probability."""
    layers = skflow.ops.dnn(X, [10, 20, 10], keep_prob=0.5)
    return skflow.models.logistic_regression(layers, y)

classifier = skflow.TensorFlowEstimator(model_fn=my_model, n_classes=3)
classifier.fit(iris.data, iris.target)
score = metrics.accuracy_score(classifier.predict(iris.data), iris.target)
print("Accuracy: %f" % score)

未来计划

  • 更好的处理类别变量
  • 文本分类
  • 图像 (CNNs)
  • 更多 & 更深

文章转载自 开源中国社区[https://www.oschina.net]

相关文章
|
分布式计算 并行计算 Hadoop
Tensorflow目标检测接口配合tflite量化模型(二)
Tensorflow目标检测接口配合tflite量化模型
374 0
Tensorflow目标检测接口配合tflite量化模型(二)
|
XML 存储 TensorFlow
Tensorflow目标检测接口配合tflite量化模型(一)
Tensorflow目标检测接口配合tflite量化模型
216 0
Tensorflow目标检测接口配合tflite量化模型(一)
|
Ubuntu Shell TensorFlow
TensorFlow Lite开发系列之C++接口解析(二)
TensorFlow Lite开发系列之C++接口解析
311 0
TensorFlow Lite开发系列之C++接口解析(二)
|
Linux TensorFlow 算法框架/工具
TensorFlow Lite开发系列之python接口解析(一)
环境: tensorflow2.x, 一定要使用linux系统,后期转换模型windows会出现bug
277 0
TensorFlow Lite开发系列之python接口解析(一)
|
存储 人工智能 TensorFlow
Tensorflow将模型导出为一个文件及接口设置
Tensorflow将模型导出为一个文件及接口设置
|
机器学习/深度学习 Linux 算法框架/工具
|
23天前
|
机器学习/深度学习 人工智能 算法
猫狗宠物识别系统Python+TensorFlow+人工智能+深度学习+卷积网络算法
宠物识别系统使用Python和TensorFlow搭建卷积神经网络,基于37种常见猫狗数据集训练高精度模型,并保存为h5格式。通过Django框架搭建Web平台,用户上传宠物图片即可识别其名称,提供便捷的宠物识别服务。
231 55
|
2月前
|
机器学习/深度学习 数据采集 数据可视化
TensorFlow,一款由谷歌开发的开源深度学习框架,详细讲解了使用 TensorFlow 构建深度学习模型的步骤
本文介绍了 TensorFlow,一款由谷歌开发的开源深度学习框架,详细讲解了使用 TensorFlow 构建深度学习模型的步骤,包括数据准备、模型定义、损失函数与优化器选择、模型训练与评估、模型保存与部署,并展示了构建全连接神经网络的具体示例。此外,还探讨了 TensorFlow 的高级特性,如自动微分、模型可视化和分布式训练,以及其在未来的发展前景。
131 5