机器学习:模型评价指标总结

本文涉及的产品
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
模型训练 PAI-DLC,5000CU*H 3个月
交互式建模 PAI-DSW,每月250计算时 3个月
简介: 机器学习:模型评价指标总结
  • 子曰:“温故而知新,可以为师矣


混淆矩阵


640.png


混淆矩阵是一种特定的矩阵用来呈现算法性能的可视化效果,通常用于二分类模型。其每一列代表预测值,每一行代表的是实际的类别。


其实就是把所有类别的预测结果与真实结果按类别放置到了同一个表里,在这个表格中我们可以清楚看到每个类别正确识别的数量和错误识别的数量。


Name     预测值   真实值
    TP          Y      Y
    TN          N      N
    FP          Y      N
    FN          N      Y


TP :预测为正样本,实际也是正样本。

FP :预测为正样本,实际是负样本。

FN :预测为负样本,实际是正样本。

TN :预测为负样本,实际也是负样本。


640.png


准确率

准确率是指我们的模型预测正确的结果所占的比例。

image.png

精确率


所有预测为正样本的集合中预测正确的比例,精确度告诉我们,实际上有多少正确预测的案例是肯定的。


image.png

召回率


召回率告诉我们可以使用模型正确预测多少实际阳性病例。

image.png


F1 值

实际上,当我们尝试提高模型的精度时,召回率会下降,反之亦然。F1分数以单个值捕获了两种趋势。F1得分是Precision和Recall的谐波平均值,因此它给出了关于这两个指标的组合思想。当Precision等于Recall时,最大值。


image.png

ROC & AUC

640.png

image.png

对于预测出的概率值和它们的真实label,当取不同阈值时,会得到很多的坐标 (x,y),把这些点都连接起来就是ROC曲线。


auc值是roc曲线下的面积,从定义就能看出,对于同一个 x,我们希望 y 越大越好,也就是说,在 FP 固定的时候,模型中 TP 越高 AUC 值就越高,所以 AUC 值很在乎正样本的准确率,当数据比例不平衡时,我们的模型很可能偏向预测样本数更多的负样本,虽然这时准确率和 log损失 看着都不错,可是 AUC 值却不理想。


log损失


log损失反映了样本的平均偏差,经常作为模型的损失函数来做优化,可是,当训练数据正负样本不平衡时,比如我们经常会遇到正样本很少,负样本很多的情况,我们更希望在控制 FP 的情况下检出更多的正样本,若不做任何处理,则降低LogLoss会倾向于偏向负样本一方,此时LogLoss很低,可正样本的检出效果却并不理想。


image.png

MAE

平均绝对误差(Mean Absolute Error),观测值与真实值的误差绝对值的平均值。

image.png

MSE


均方误差(MSE)是最常用的回归损失函数,计算方法是求预测值与真实值之间距离的平方和。

image.png


MAE对于异常值比MSE更稳定,相对于使用MAE计算损失,使用MSE的模型会赋予异常点更大的权重。如果异常点代表在商业中很重要的异常情况,并且需要被检测出来,则应选用MSE损失函数。相反,如果只把异常值当作受损数据,则应选用MAE损失函数。


R方


RMSE和MAE有局限性:同一个算法模型,解决不同的问题,不能体现此模型针对不同问题所表现的优劣。因为不同实际应用中,数据的量纲不同,无法直接比较预测值,因此无法判断模型更适合预测哪个问题。方案:将预测结果转换为准确度,结果都在[0, 1]之间,针对不同问题的预测准确度,可以比较并来判断此模型更适合预测哪个问题;


image.png

相关实践学习
基于MSE实现微服务的全链路灰度
通过本场景的实验操作,您将了解并实现在线业务的微服务全链路灰度能力。
相关文章
|
2月前
|
机器学习/深度学习 数据采集 数据挖掘
实战派教学:掌握Scikit-learn,轻松实现数据分析与机器学习模型优化!
【10月更文挑战第4天】Scikit-learn凭借高效、易用及全面性成为数据科学领域的首选工具,简化了数据预处理、模型训练与评估流程,并提供丰富算法库。本文通过实战教学,详细介绍Scikit-learn的基础入门、数据预处理、模型选择与训练、评估及调优等关键步骤,助你快速掌握并优化数据分析与机器学习模型。从环境搭建到参数调优,每一步都配有示例代码,便于理解和实践。
99 2
|
2月前
|
机器学习/深度学习 数据采集 监控
如何使用机器学习模型来自动化评估数据质量?
【10月更文挑战第6天】如何使用机器学习模型来自动化评估数据质量?
|
19天前
|
机器学习/深度学习 人工智能 算法
探索机器学习中的线性回归模型
本文深入探讨了机器学习中广泛使用的线性回归模型,从其基本概念和数学原理出发,逐步引导读者理解模型的构建、训练及评估过程。通过实例分析与代码演示,本文旨在为初学者提供一个清晰的学习路径,帮助他们在实践中更好地应用线性回归模型解决实际问题。
|
28天前
|
机器学习/深度学习 数据采集 监控
如何使用机器学习模型来自动化评估数据质量?
如何使用机器学习模型来自动化评估数据质量?
|
24天前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
68 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
29天前
|
机器学习/深度学习 算法 PyTorch
用Python实现简单机器学习模型:以鸢尾花数据集为例
用Python实现简单机器学习模型:以鸢尾花数据集为例
74 1
|
2月前
|
数据采集 移动开发 数据可视化
模型预测笔记(一):数据清洗分析及可视化、模型搭建、模型训练和预测代码一体化和对应结果展示(可作为baseline)
这篇文章介绍了数据清洗、分析、可视化、模型搭建、训练和预测的全过程,包括缺失值处理、异常值处理、特征选择、数据归一化等关键步骤,并展示了模型融合技术。
86 1
模型预测笔记(一):数据清洗分析及可视化、模型搭建、模型训练和预测代码一体化和对应结果展示(可作为baseline)
|
1月前
|
机器学习/深度学习 数据采集 Python
从零到一:手把手教你完成机器学习项目,从数据预处理到模型部署全攻略
【10月更文挑战第25天】本文通过一个预测房价的案例,详细介绍了从数据预处理到模型部署的完整机器学习项目流程。涵盖数据清洗、特征选择与工程、模型训练与调优、以及使用Flask进行模型部署的步骤,帮助读者掌握机器学习的最佳实践。
85 1
|
1月前
|
机器学习/深度学习 数据采集 监控
如何使用机器学习模型来自动化评估数据质量?
如何使用机器学习模型来自动化评估数据质量?
|
22天前
|
机器学习/深度学习 自然语言处理 语音技术
探索机器学习中的深度学习模型:原理与应用
探索机器学习中的深度学习模型:原理与应用
33 0

热门文章

最新文章

相关产品

  • 人工智能平台 PAI