【C语言 - 数据结构】树、二叉树(下篇)(上)

简介: 【C语言 - 数据结构】树、二叉树(下篇)

一、二叉树的遍历原理


1.1原理:


二叉树的遍历(traveing binary tree)是指从根结点出发,按照某种次序依次访问二叉树中所有的结点,使每个结点都被访问一次,且仅被访问一次。


这里有两个关键词:访问和次序。


1.2.1访问


访问其实是要根据实际的需要来确定具体做什么,比如对每个结点进行相关计算,输出打印等,它算作是一个抽象操作。在这里我们可以简单地假定就是输出结点的数据信息。


1.2.2次序


二叉树的遍历次序不同于线性结构,最多也就是从头至尾、循环、双向等简单的遍历方式。树的结点之间不存在唯一的前驱和后继关系,在访问一个结点后,下一个被访问的结点面临着不同的选择就像你人生的道路上,高考填志愿要面临哪个城市、哪所大学、具体专业等选择,由选择方式的不同,遍历的次序就完全不同了。


1669440309505.jpg


二、二叉树的前序、中序、后序遍历


2.1二叉树遍历的几种方式


二叉树的遍历方式可以很多,如果我们限制了从左到右的习惯方式,那么主要就分为四种:


前序遍历、中序遍历、后序遍历、层次遍历。


这四种遍历方式的基本顺序和在数组中存储的形式如下图所示:


1669440338701.jpg


2.2前序遍历


规则是若 叉树为空,则空操作返回,否则先访问根结点,然后前序遍历左子树,再前序遍历右子树。如图遍历的顺序为: ABDGHCEIF


1669440355197.jpg


步骤:1、先造一颗树


造树:

#include<stdio.h>
#include<stdlib.h>
typedef int BTDataType;
typedef struct BinaryTreeNode
{
       struct BinaryTreeNode* left;
       struct BinaryTreeNode* right;
       BTDataType data;
}BTNode;
malloc一块空间
BTNode* BuyBTNode(BTDataType x)
{
       BTNode* node = (BTNode*)malloc(sizeof(BTNode));
       if (node == NULL)
       {
              printf("malloc fail\n");
              exit(-1);
       }
       node->data = x;
       node->left = node->right = NULL;
       return node;
}

紧接着实现链接

BTNode* CreatBinaryTree()
{
       BTNode* node1 = BuyBTNode(1);
       BTNode* node2 = BuyBTNode(2);
       BTNode* node3 = BuyBTNode(3);
       BTNode* node4 = BuyBTNode(4);
       BTNode* node5 = BuyBTNode(5);
       BTNode* node6 = BuyBTNode(6);
       node1->left = node2;
       node1->right = node4;
       node2->left = node3;
       node4->left = node5;
       node4->right = node6;
       return node1;
}


2、写前序遍历和main函数

void PrevOrder(BTNode* root)//前序遍历
{
       if (root == NULL)//如果根是空就return
       {
              printf("NULL ");
              return;
       }
       printf("%d ", root->data);
       PrevOrder(root->left);//左子树
       PrevOrder(root->right);//右子树
}
int main()
{
       BTNode* tree = CreatBinaryTree();
       PrevOrder(tree);
       return 0;
}

程序运行结果 :(对照1、2、3、4、5、6)上图

1669440406318.jpg


2.3中序遍历


规则是若树为空,则空操作返回,否则从根结点开始(注意并不是先访问根结 点) ,中序遍历根结点的左子树,然后是访问根结点,最后中序遍历右子树 如图所示, 遍历的顺序为GDHBAELCF.


1669440423329.jpg

void InOrder(BTNode* root)//中序遍历
{
       if (root == NULL)//如果根是空就return
       {
              printf("NULL ");
              return;
       }
       InOrder(root->left);//先左子树
       printf("%d ", root->data);
       InOrder(root->right);//再右子树
}
int main()
{
       BTNode* tree = CreatBinaryTree();
       InOrder(tree);
       return 0;
}

程序运行结果

1669440444655.jpg


2.4后序遍历


规则是若树为空,则空操作返回,否则从左到右先叶子后结点的方式遍历访问左右子树,最后是访问根结点 如图所示 遍历的顺序为 GHDBIEFCA。


1669440460875.jpg

void BackOrder(BTNode* root)
{
       if (root == NULL)//如果根是空就return
       {
              printf("NULL ");
              return;
       }
       BackOrder(root->left);
       BackOrder(root->right);
       printf("%d ", root->data);
}
int main()
{
       BTNode* tree = CreatBinaryTree();
       BackOrder(tree);
       return 0;
}

程序运行结果:


1669440481034.jpg


二叉树的遍历的几种路径 (小结):网上找的图


1669440490915.jpg


2.5层序遍历


层序遍历:除了先序遍历、中序遍历、后序遍历外,还可以对二叉树进行层序遍历。设二叉树的根节点所在 层数为1,层序遍历就是从所在二叉树的根节点出发,首先访问第一层的树根节点,然后从左到右访问第2层 上的节点,接着是第三层的节点,以此类推,自上而下,自左至右逐层访问树的结点的过程就是层序遍历。


1669440509937.jpg

1669440517714.jpg

层序遍历与之前的三种遍历情况有所不同,层序遍历的实现依赖于队列,会比较麻烦一些。


1669440527619.jpg


//层序遍历
void LevelOrder(BTNode* root)
{
       Queue q;
       QueueInit(&q);
       if (root)
       {
              QueuePush(&q, root);//先插入根节点
       }
       while (QueueEmpty(&q))
       {
              BTNode* front = QueueFront(&q);
              QueuePop(&q);//把队列里根节点的指针拿出来,但是指针指向的节点的值没有被销毁;
              printf("%d ", front->data);
              if (front->left)
              {
                      QueuePush(&q, front->left);
              }
              if (front->right)
              {
                      QueuePush(&q, front->right);
              }
              printf("\n");
       }
       QueueDestry(&q);
}

三、二叉树的拓展


3.1计算树的结点的个数


low版(代码比较挫)但是容易理解

int count = 0;
void BTreeSize(BTNode* root)
{
       if (root == NULL)
              return;
       ++count;
       BTreeSize(root->left);
       BTreeSize(root->right);
       //后序
}

注意:


这里为什么不用static静态变量。


因为静态变量在静态区,是整个程序结束后才销毁,而且局部静态变量不能置零


所以如果再计算下一个树的结点就会和上一个树累加。


static只初始化一次,所以要么就是全局静态变量。


具体的调用方法://更好的计数方法,既不使用全局,也不使用静态变量-

//思想遍历加计数(传地址调用)指针

void BTreeSize(BTNode* root, int* pCount)
{
       if (root == NULL)
              return;
       ++(*pCount);//把一个变量的地址传过去
       BTreeSize(root->left, pCount);
       BTreeSize(root->right, pCount);
       //后序
}

3.2计算树的叶子结点的个数

1669440580892.jpg

思路:叶子结点的左右结点都为空,递归+分治思想


因此:代码如下


int BTreeLaafSize(BTNode* root)
{
       if (root == NULL)
              return 0;
       if (root->left == NULL && root->right == NULL)
              return 1;
       return BTreeLaafSize(root->left) + BTreeLaafSize(root->right);
}
相关文章
|
8天前
|
存储 人工智能 C语言
数据结构基础详解(C语言): 栈的括号匹配(实战)与栈的表达式求值&&特殊矩阵的压缩存储
本文首先介绍了栈的应用之一——括号匹配,利用栈的特性实现左右括号的匹配检测。接着详细描述了南京理工大学的一道编程题,要求判断输入字符串中的括号是否正确匹配,并给出了完整的代码示例。此外,还探讨了栈在表达式求值中的应用,包括中缀、后缀和前缀表达式的转换与计算方法。最后,文章介绍了矩阵的压缩存储技术,涵盖对称矩阵、三角矩阵及稀疏矩阵的不同压缩存储策略,提高存储效率。
|
8天前
|
C语言
数据结构基础详解(C语言):图的基本概念_无向图_有向图_子图_生成树_生成森林_完全图
本文介绍了图的基本概念,包括图的定义、无向图与有向图、简单图与多重图等,并解释了顶点度、路径、连通性等相关术语。此外还讨论了子图、生成树、带权图及几种特殊形态的图,如完全图和树等。通过这些概念,读者可以更好地理解图论的基础知识。
|
10天前
|
存储 算法 C语言
C语言手撕实战代码_二叉树_构造二叉树_层序遍历二叉树_二叉树深度的超详细代码实现
这段代码和文本介绍了一系列二叉树相关的问题及其解决方案。其中包括根据前序和中序序列构建二叉树、通过层次遍历序列和中序序列创建二叉树、计算二叉树节点数量、叶子节点数量、度为1的节点数量、二叉树高度、特定节点子树深度、判断两棵树是否相似、将叶子节点链接成双向链表、计算算术表达式的值、判断是否为完全二叉树以及求二叉树的最大宽度等。每道题目均提供了详细的算法思路及相应的C/C++代码实现,帮助读者理解和掌握二叉树的基本操作与应用。
|
10天前
|
存储 C语言
数据结构基础详解(C语言): 树与二叉树的应用_哈夫曼树与哈夫曼曼编码_并查集_二叉排序树_平衡二叉树
本文详细介绍了树与二叉树的应用,涵盖哈夫曼树与哈夫曼编码、并查集以及二叉排序树等内容。首先讲解了哈夫曼树的构造方法及其在数据压缩中的应用;接着介绍了并查集的基本概念、存储结构及优化方法;随后探讨了二叉排序树的定义、查找、插入和删除操作;最后阐述了平衡二叉树的概念及其在保证树平衡状态下的插入和删除操作。通过本文,读者可以全面了解树与二叉树在实际问题中的应用技巧和优化策略。
|
10天前
|
存储 算法 C语言
C语言手撕数据结构代码_顺序表_静态存储_动态存储
本文介绍了基于静态和动态存储的顺序表操作实现,涵盖创建、删除、插入、合并、求交集与差集、逆置及循环移动等常见操作。通过详细的C语言代码示例,展示了如何高效地处理顺序表数据结构的各种问题。
|
10天前
|
存储 C语言
数据结构基础详解(C语言): 栈与队列的详解附完整代码
栈是一种仅允许在一端进行插入和删除操作的线性表,常用于解决括号匹配、函数调用等问题。栈分为顺序栈和链栈,顺序栈使用数组存储,链栈基于单链表实现。栈的主要操作包括初始化、销毁、入栈、出栈等。栈的应用广泛,如表达式求值、递归等场景。栈的顺序存储结构由数组和栈顶指针构成,链栈则基于单链表的头插法实现。
|
12天前
|
Java
【数据结构】栈和队列的深度探索,从实现到应用详解
本文介绍了栈和队列这两种数据结构。栈是一种后进先出(LIFO)的数据结构,元素只能从栈顶进行插入和删除。栈的基本操作包括压栈、出栈、获取栈顶元素、判断是否为空及获取栈的大小。栈可以通过数组或链表实现,并可用于将递归转化为循环。队列则是一种先进先出(FIFO)的数据结构,元素只能从队尾插入,从队首移除。队列的基本操作包括入队、出队、获取队首元素、判断是否为空及获取队列大小。队列可通过双向链表或数组实现。此外,双端队列(Deque)支持两端插入和删除元素,提供了更丰富的操作。
14 0
【数据结构】栈和队列的深度探索,从实现到应用详解
|
1月前
栈的几个经典应用,真的绝了
文章总结了栈的几个经典应用场景,包括使用两个栈来实现队列的功能以及利用栈进行对称匹配,并通过LeetCode上的题目示例展示了栈在实际问题中的应用。
栈的几个经典应用,真的绝了
|
16天前
|
Linux C++ Windows
栈对象返回的问题 RVO / NRVO
具名返回值优化((Name)Return Value Optimization,(N)RVO)是一种优化机制,在函数返回对象时,通过减少临时对象的构造、复制构造及析构调用次数来降低开销。在C++中,通过直接在返回位置构造对象并利用隐藏参数传递地址,可避免不必要的复制操作。然而,Windows和Linux上的RVO与NRVO实现有所不同,且接收栈对象的方式也会影响优化效果。
|
1月前
|
负载均衡 网络协议 安全
DKDP用户态协议栈-kni
DKDP用户态协议栈-kni