【C语言 - 数据结构】树、二叉树(下篇)(上)

简介: 【C语言 - 数据结构】树、二叉树(下篇)

一、二叉树的遍历原理


1.1原理:


二叉树的遍历(traveing binary tree)是指从根结点出发,按照某种次序依次访问二叉树中所有的结点,使每个结点都被访问一次,且仅被访问一次。


这里有两个关键词:访问和次序。


1.2.1访问


访问其实是要根据实际的需要来确定具体做什么,比如对每个结点进行相关计算,输出打印等,它算作是一个抽象操作。在这里我们可以简单地假定就是输出结点的数据信息。


1.2.2次序


二叉树的遍历次序不同于线性结构,最多也就是从头至尾、循环、双向等简单的遍历方式。树的结点之间不存在唯一的前驱和后继关系,在访问一个结点后,下一个被访问的结点面临着不同的选择就像你人生的道路上,高考填志愿要面临哪个城市、哪所大学、具体专业等选择,由选择方式的不同,遍历的次序就完全不同了。


1669440309505.jpg


二、二叉树的前序、中序、后序遍历


2.1二叉树遍历的几种方式


二叉树的遍历方式可以很多,如果我们限制了从左到右的习惯方式,那么主要就分为四种:


前序遍历、中序遍历、后序遍历、层次遍历。


这四种遍历方式的基本顺序和在数组中存储的形式如下图所示:


1669440338701.jpg


2.2前序遍历


规则是若 叉树为空,则空操作返回,否则先访问根结点,然后前序遍历左子树,再前序遍历右子树。如图遍历的顺序为: ABDGHCEIF


1669440355197.jpg


步骤:1、先造一颗树


造树:

#include<stdio.h>
#include<stdlib.h>
typedef int BTDataType;
typedef struct BinaryTreeNode
{
       struct BinaryTreeNode* left;
       struct BinaryTreeNode* right;
       BTDataType data;
}BTNode;
malloc一块空间
BTNode* BuyBTNode(BTDataType x)
{
       BTNode* node = (BTNode*)malloc(sizeof(BTNode));
       if (node == NULL)
       {
              printf("malloc fail\n");
              exit(-1);
       }
       node->data = x;
       node->left = node->right = NULL;
       return node;
}

紧接着实现链接

BTNode* CreatBinaryTree()
{
       BTNode* node1 = BuyBTNode(1);
       BTNode* node2 = BuyBTNode(2);
       BTNode* node3 = BuyBTNode(3);
       BTNode* node4 = BuyBTNode(4);
       BTNode* node5 = BuyBTNode(5);
       BTNode* node6 = BuyBTNode(6);
       node1->left = node2;
       node1->right = node4;
       node2->left = node3;
       node4->left = node5;
       node4->right = node6;
       return node1;
}


2、写前序遍历和main函数

void PrevOrder(BTNode* root)//前序遍历
{
       if (root == NULL)//如果根是空就return
       {
              printf("NULL ");
              return;
       }
       printf("%d ", root->data);
       PrevOrder(root->left);//左子树
       PrevOrder(root->right);//右子树
}
int main()
{
       BTNode* tree = CreatBinaryTree();
       PrevOrder(tree);
       return 0;
}

程序运行结果 :(对照1、2、3、4、5、6)上图

1669440406318.jpg


2.3中序遍历


规则是若树为空,则空操作返回,否则从根结点开始(注意并不是先访问根结 点) ,中序遍历根结点的左子树,然后是访问根结点,最后中序遍历右子树 如图所示, 遍历的顺序为GDHBAELCF.


1669440423329.jpg

void InOrder(BTNode* root)//中序遍历
{
       if (root == NULL)//如果根是空就return
       {
              printf("NULL ");
              return;
       }
       InOrder(root->left);//先左子树
       printf("%d ", root->data);
       InOrder(root->right);//再右子树
}
int main()
{
       BTNode* tree = CreatBinaryTree();
       InOrder(tree);
       return 0;
}

程序运行结果

1669440444655.jpg


2.4后序遍历


规则是若树为空,则空操作返回,否则从左到右先叶子后结点的方式遍历访问左右子树,最后是访问根结点 如图所示 遍历的顺序为 GHDBIEFCA。


1669440460875.jpg

void BackOrder(BTNode* root)
{
       if (root == NULL)//如果根是空就return
       {
              printf("NULL ");
              return;
       }
       BackOrder(root->left);
       BackOrder(root->right);
       printf("%d ", root->data);
}
int main()
{
       BTNode* tree = CreatBinaryTree();
       BackOrder(tree);
       return 0;
}

程序运行结果:


1669440481034.jpg


二叉树的遍历的几种路径 (小结):网上找的图


1669440490915.jpg


2.5层序遍历


层序遍历:除了先序遍历、中序遍历、后序遍历外,还可以对二叉树进行层序遍历。设二叉树的根节点所在 层数为1,层序遍历就是从所在二叉树的根节点出发,首先访问第一层的树根节点,然后从左到右访问第2层 上的节点,接着是第三层的节点,以此类推,自上而下,自左至右逐层访问树的结点的过程就是层序遍历。


1669440509937.jpg

1669440517714.jpg

层序遍历与之前的三种遍历情况有所不同,层序遍历的实现依赖于队列,会比较麻烦一些。


1669440527619.jpg


//层序遍历
void LevelOrder(BTNode* root)
{
       Queue q;
       QueueInit(&q);
       if (root)
       {
              QueuePush(&q, root);//先插入根节点
       }
       while (QueueEmpty(&q))
       {
              BTNode* front = QueueFront(&q);
              QueuePop(&q);//把队列里根节点的指针拿出来,但是指针指向的节点的值没有被销毁;
              printf("%d ", front->data);
              if (front->left)
              {
                      QueuePush(&q, front->left);
              }
              if (front->right)
              {
                      QueuePush(&q, front->right);
              }
              printf("\n");
       }
       QueueDestry(&q);
}

三、二叉树的拓展


3.1计算树的结点的个数


low版(代码比较挫)但是容易理解

int count = 0;
void BTreeSize(BTNode* root)
{
       if (root == NULL)
              return;
       ++count;
       BTreeSize(root->left);
       BTreeSize(root->right);
       //后序
}

注意:


这里为什么不用static静态变量。


因为静态变量在静态区,是整个程序结束后才销毁,而且局部静态变量不能置零


所以如果再计算下一个树的结点就会和上一个树累加。


static只初始化一次,所以要么就是全局静态变量。


具体的调用方法://更好的计数方法,既不使用全局,也不使用静态变量-

//思想遍历加计数(传地址调用)指针

void BTreeSize(BTNode* root, int* pCount)
{
       if (root == NULL)
              return;
       ++(*pCount);//把一个变量的地址传过去
       BTreeSize(root->left, pCount);
       BTreeSize(root->right, pCount);
       //后序
}

3.2计算树的叶子结点的个数

1669440580892.jpg

思路:叶子结点的左右结点都为空,递归+分治思想


因此:代码如下


int BTreeLaafSize(BTNode* root)
{
       if (root == NULL)
              return 0;
       if (root->left == NULL && root->right == NULL)
              return 1;
       return BTreeLaafSize(root->left) + BTreeLaafSize(root->right);
}
相关文章
|
2月前
|
算法 数据处理 C语言
C语言中的位运算技巧,涵盖基本概念、应用场景、实用技巧及示例代码,并讨论了位运算的性能优势及其与其他数据结构和算法的结合
本文深入解析了C语言中的位运算技巧,涵盖基本概念、应用场景、实用技巧及示例代码,并讨论了位运算的性能优势及其与其他数据结构和算法的结合,旨在帮助读者掌握这一高效的数据处理方法。
68 1
|
12天前
|
存储 C++
【C++数据结构——树】哈夫曼树(头歌实践教学平台习题) 【合集】
【数据结构——树】哈夫曼树(头歌实践教学平台习题)【合集】目录 任务描述 相关知识 测试说明 我的通关代码: 测试结果:任务描述 本关任务:编写一个程序构建哈夫曼树和生成哈夫曼编码。 相关知识 为了完成本关任务,你需要掌握: 1.如何构建哈夫曼树, 2.如何生成哈夫曼编码。 测试说明 平台会对你编写的代码进行测试: 测试输入: 1192677541518462450242195190181174157138124123 (用户分别输入所列单词的频度) 预
49 14
【C++数据结构——树】哈夫曼树(头歌实践教学平台习题) 【合集】
|
12天前
|
Java C++
【C++数据结构——树】二叉树的基本运算(头歌实践教学平台习题)【合集】
本关任务:编写一个程序实现二叉树的基本运算。​ 相关知识 创建二叉树 销毁二叉树 查找结点 求二叉树的高度 输出二叉树 //二叉树节点结构体定义 structTreeNode{ intval; TreeNode*left; TreeNode*right; TreeNode(intx):val(x),left(NULL),right(NULL){} }; 创建二叉树 //创建二叉树函数(简单示例,手动构建) TreeNode*create
36 12
|
12天前
|
C++
【C++数据结构——树】二叉树的性质(头歌实践教学平台习题)【合集】
本文档介绍了如何根据二叉树的括号表示串创建二叉树,并计算其结点个数、叶子结点个数、某结点的层次和二叉树的宽度。主要内容包括: 1. **定义二叉树节点结构体**:定义了包含节点值、左子节点指针和右子节点指针的结构体。 2. **实现构建二叉树的函数**:通过解析括号表示串,递归地构建二叉树的各个节点及其子树。 3. **使用示例**:展示了如何调用 `buildTree` 函数构建二叉树并进行简单验证。 4. **计算二叉树属性**: - 计算二叉树节点个数。 - 计算二叉树叶子节点个数。 - 计算某节点的层次。 - 计算二叉树的宽度。 最后,提供了测试说明及通关代
37 10
|
12天前
|
存储 算法 测试技术
【C++数据结构——树】二叉树的遍历算法(头歌教学实验平台习题) 【合集】
本任务旨在实现二叉树的遍历,包括先序、中序、后序和层次遍历。首先介绍了二叉树的基本概念与结构定义,并通过C++代码示例展示了如何定义二叉树节点及构建二叉树。接着详细讲解了四种遍历方法的递归实现逻辑,以及层次遍历中队列的应用。最后提供了测试用例和预期输出,确保代码正确性。通过这些内容,帮助读者理解并掌握二叉树遍历的核心思想与实现技巧。
37 2
|
26天前
|
数据库
数据结构中二叉树,哈希表,顺序表,链表的比较补充
二叉搜索树,哈希表,顺序表,链表的特点的比较
数据结构中二叉树,哈希表,顺序表,链表的比较补充
|
2月前
|
存储 缓存 算法
在C语言中,数据结构是构建高效程序的基石。本文探讨了数组、链表、栈、队列、树和图等常见数据结构的特点、应用及实现方式
在C语言中,数据结构是构建高效程序的基石。本文探讨了数组、链表、栈、队列、树和图等常见数据结构的特点、应用及实现方式,强调了合理选择数据结构的重要性,并通过案例分析展示了其在实际项目中的应用,旨在帮助读者提升编程能力。
87 5
|
2月前
|
并行计算 算法 测试技术
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面,旨在通过综合策略提升程序性能,满足实际需求。
82 1
|
2月前
|
C语言
【数据结构】栈和队列(c语言实现)(附源码)
本文介绍了栈和队列两种数据结构。栈是一种只能在一端进行插入和删除操作的线性表,遵循“先进后出”原则;队列则在一端插入、另一端删除,遵循“先进先出”原则。文章详细讲解了栈和队列的结构定义、方法声明及实现,并提供了完整的代码示例。栈和队列在实际应用中非常广泛,如二叉树的层序遍历和快速排序的非递归实现等。
284 9
|
2月前
|
存储 算法
非递归实现后序遍历时,如何避免栈溢出?
后序遍历的递归实现和非递归实现各有优缺点,在实际应用中需要根据具体的问题需求、二叉树的特点以及性能和空间的限制等因素来选择合适的实现方式。
44 1

热门文章

最新文章