人工智能应用落地的两难

简介: 一直以来,人工智能难以落地的讨论不绝于耳。一方面是各高校研究机构,层出不穷的模型和算法,不断刷新着各项指标,另一方面,却迟迟不见这些最新的科研成果转化落地。各研究机构、学者团体,手握这些最新的科研材料,只能或者kaggle、天池刷刷比赛,或者去参加各种会议刷刷论文。无论哪种方式,都无法获得实际的工业应用结果数据,也无法获得响应的科研报酬。

一直以来,人工智能难以落地的讨论不绝于耳。一方面是各高校研究机构,层出不穷的模型和算法,不断刷新着各项指标,另一方面,却迟迟不见这些最新的科研成果转化落地。

各研究机构、学者团体,手握这些最新的科研材料,只能或者kaggle、天池刷刷比赛,或者去参加各种会议刷刷论文。无论哪种方式,都无法获得实际的工业应用结果数据,也无法获得响应的科研报酬。

其实工业上实际上非常缺乏这些最新的人工智能科研成果。有的企业甚至还是用的几年前的技术在跑。效果偏离实际应用很远。

那是什么造成了这两者之间的隔阂呢?一方面是消息闭塞,人工智能从业者无法准确高效的找到这些企业需求,另一方面企业也无法信任单个开发者的成果,在没有比较的情况下,就投入资金进行科研转化。万一效果不及预期,前期投入难以回本。

可喜的是,目前有些平台已经注意到这些问题,在尝试搭建科研结果和企业需求之间的桥梁,比如AI模型市场(http://aimodelmarket.cn)这样的平台,就是通过API合作的方式,建立AI算法模型和企业需求之间的桥梁。

那信任问题如何解决呢?本身平台就要成为双方的担保,同时引入评价机制。同时API的合作,可以按量付费,如果企业对效果不满意,可随时终止。这就给了双方极大的保护。

那如何让算法工程师的最新算法模型成为工业上的实际应用呢?AI模型市场(http://aimodelmarket.cn)采用的是容器的方式,将算法工程师的最新模型打包进容器,即方便部署,又满足了企业扩展性的需求。

可能人工智能应用落地还有很多困难和挑战,需要我们去一个个攻克和填补,但我们希望这类平台是个不错的开始。

目录
相关文章
|
2天前
|
机器学习/深度学习 人工智能 算法
探索人工智能在图像处理中的应用
【10月更文挑战第32天】本文将深入探讨人工智能(AI)如何在图像处理领域大放异彩,从基础的图像识别到复杂的场景解析,AI技术正逐步改变我们对视觉信息的理解和应用。文章将通过具体案例,揭示AI如何优化图像质量、实现风格迁移和进行内容识别,进而讨论这些技术背后的挑战与未来发展方向。
|
3天前
|
机器学习/深度学习 人工智能 算法
人工智能在医疗诊断中的应用与前景
本文探讨了人工智能(AI)技术在医疗诊断领域的应用现状及其未来发展前景。通过分析AI技术如何辅助医生进行疾病诊断、提高诊断准确性和效率,以及面临的挑战和伦理问题,本文旨在为读者提供一个关于AI在医疗领域应用的全面视角。
|
4天前
|
机器学习/深度学习 人工智能 监控
人工智能在医疗健康领域的创新应用
本文旨在探讨人工智能技术在医疗健康领域的创新应用。通过分析AI如何助力疾病诊断、治疗计划制定、患者监护以及药物研发,本文揭示了AI技术为现代医疗服务带来的革命性变化。此外,文章还讨论了实施这些技术时面临的挑战和未来发展趋势,为医疗行业的数字化转型提供了深入见解。
|
5天前
|
人工智能 自然语言处理 自动驾驶
深入理解ChatGPT:下一代人工智能助手的开发与应用
【10月更文挑战第27天】本文深入探讨了ChatGPT的技术原理、开发技巧和应用场景,展示了其在语言理解和生成方面的强大能力。文章介绍了基于Transformer的架构、预训练与微调技术,以及如何定制化开发、确保安全性和支持多语言。通过实用工具如GPT-3 API和Fine-tuning as a Service,开发者可以轻松集成ChatGPT。未来,ChatGPT有望在智能家居、自动驾驶等领域发挥更大作用,推动人工智能技术的发展。
|
7天前
|
机器学习/深度学习 人工智能 搜索推荐
探索人工智能在医疗健康领域的应用
【10月更文挑战第25天】 本文深入探讨了人工智能(AI)技术在医疗健康领域的现状与未来趋势。通过对AI技术在疾病诊断、治疗方案优化、患者管理等方面的应用案例分析,揭示了AI如何助力提高医疗服务效率和质量。文章还讨论了AI技术面临的挑战,包括数据安全、伦理问题以及技术普及的障碍,并提出了相应的解决策略。通过本文,读者将对AI在医疗健康领域的潜力和挑战有一个全面的认识。
30 2
|
8天前
|
机器学习/深度学习 人工智能 自然语言处理
探索人工智能的无限可能:技术前沿与应用实践
【10月更文挑战第23天】探索人工智能的无限可能:技术前沿与应用实践
|
12天前
|
机器学习/深度学习 人工智能 算法
人工智能在医疗诊断中的应用及其挑战
【10月更文挑战第22天】人工智能技术正逐渐渗透到我们生活的方方面面,尤其是在医疗领域,它展现出了巨大的潜力。从辅助医生进行疾病诊断到预测患者病情的发展,AI的应用正在改变着传统的医疗模式。然而,随之而来的是一系列挑战,包括数据隐私、算法偏见以及医患关系的重新定位等问题。本文将探讨AI在医疗诊断中的应用实例,并分析面临的主要挑战,以期对未来的医疗AI应用提供深入的见解和建议。
|
12天前
|
传感器 人工智能 自动驾驶
人工智能在自动驾驶汽车中的应用
【10月更文挑战第31天】人工智能在自动驾驶汽车中的应用是科技进步与汽车产业转型的产物。通过计算机视觉、雷达、LiDAR和超声波传感器等技术,自动驾驶汽车实现了精准感知;借助复杂AI算法,实现决策与控制、路径规划与导航。尽管面临技术成熟度、法规与伦理、公众接受度等挑战,但未来自动驾驶汽车有望在全球范围内实现商业化普及,彻底改变出行方式,提高道路安全,减少交通拥堵,促进绿色出行。
|
17天前
|
机器学习/深度学习 人工智能 自然语言处理
人工智能技术在金融领域的应用有哪些?
【10月更文挑战第16天】人工智能技术在金融领域的应用有哪些?
480 1
|
20天前
|
机器学习/深度学习 人工智能 自然语言处理
探索人工智能在医疗诊断中的应用与发展
【10月更文挑战第13天】 随着科技的不断进步,人工智能(AI)在医疗领域展现出巨大潜力。本文将探讨AI在医疗诊断中的应用现状、面临的挑战以及未来发展的趋势。通过深入分析AI技术如何辅助医生提高诊断精度和效率,我们期望能为相关领域的研究和实践提供有价值的参考。
58 1