栈和队列的相关应用(二)

简介: 栈和队列的相关应用(二)
  • 逆波兰表达式求值( 后缀表达式)
逆波兰表达式是一种后缀表达式,所谓后缀就是指算符写在后面。

平常使用的算式则是一种中缀表达式,如 ( 1 + 2 ) * ( 3 + 4 ) 。
该算式的逆波兰表达式写法为 ( ( 1 2 + ) ( 3 4 + ) * ) 。

(a+b)*c-(a+b)/e的后缀表达式为:

(a+b)*c-(a+b)/e

→((a+b)*c)((a+b)/e)-

→((a+b)c*)((a+b)e/)-

→(ab+c*)(ab+e/)-

→ab+c*ab+e/-

思路:构造一个判断运算符的函数,然后判断为数字则入栈,遇到运算符则弹出两个元素进行相关操作,将运算得到的结果再次入栈,直至将最后的元素弹出栈即为最后的结果。

( ( 1 2 + ) ( 3 4 + ) * )

1,2先入栈,遇到运算符+即出栈,1,2相加得3入栈,3,4同理得7入栈,最后遇到 * ,3,7出栈相乘得结果为21

代码实现:

  public int evalRPN(String[] tokens) {
        Stack<Integer> stack = new Stack<>();
      //字符数组进行遍历
        for(String x : tokens){
            if(!isOperation(x)){
                //使用parseInt()函数将字符串转换为整型
                stack.push(Integer.parseInt(x));
            }else{
                //如果遇到运算符,弹出数据进行相关操作
                int num2 = stack.pop();
                int num1  = stack.pop();
                switch(x){
                    case "+":
                        stack.push(num1+num2);
                        break;
                    case "-":
                        stack.push(num1 - num2);
                        break;
                    case "*":
                         stack.push(num1*num2);
                         break;
                    case "/":
                        stack.push(num1 / num2);
                        break;
                }
            }
        }
        return stack.pop();
    }
//判断是否为运算符
    private boolean isOperation(String s){
        if(s.equals("+")||s.equals("-")||s.equals("*")||s.equals("/")){
            return true;
        }else{
            return false;
        }
    }
  • 将递归转化为循环

如:逆序打印链表

  1. 递归实现逆序打印
 public void display(ListNode head){
        if(head == null){
            return;
        }
     //直到链表末尾,再归回去
        if(head.next == null){
            System.out.println(head.val+" ");
            return;
        }
        display(head.next);
        System.out.println(head.val+" ");
}
  1. 使用栈实现
public void display(ListNode head){
        if(head == null){
            return;
         }
        Stack<ListNode> stack  = new Stack<>();
        ListNode cur = head;
         while(cur!= null){
              stack.push(cur);
              cur = cur.next;
             }
        while(!stack.empty()){
            ListNode ret =   stack.pop();
            System.out.println(ret.val+" ");
        }
    }
利用栈先进后出的特性,将链表的节点都加入栈中,然后再依次出栈,并打印栈中节点的 val 的值,即实现了链表的逆序打印。

✅栈、虚拟机栈、栈帧有什么区别呢?

栈: 一种先进后出的数据结构

虚拟机栈:JVM中的一块内存空间

栈帧:再调用函数过程当中,在java 虚拟机栈上开辟的一块内存

  • 使用栈来实现队列

image-20221009161421102

思路:初始化两个空栈s1,s2 当实现入队操作时,即入栈 s1 即可,出栈时 如果s1不为空,将s1当中的元素进行出栈,并入栈到s2 中去,s2再进行出栈,即实现了队列先进先出的效果,当s1与s2 都为空时,则此队列为空。

class MyQueue {
    private Stack<Integer> s1;
    private Stack<Integer> s2;
    
    public MyQueue() {
    s1 = new Stack<>();
    s2 = new Stack<>();
    }
    
    public void push(int x) {
       s1.push(x);
    }
    public int pop() {
       if(empty()){
           return -1;
       }
       if(s2.empty()){
          while(!s1.empty()){
              s2.push(s1.pop());
          }
       }
       return s2.pop();
    } 
    
    public int peek() {
        if(empty()){
           return -1;
       }
       if(s2.empty()){
          while(!s1.empty()){
              s2.push(s1.pop());
          }
       }
       return s2.peek();
    }
    
    public boolean empty() {
      return s1.empty()&&s2.empty();
    }
}
  • 使用队列来实现栈

image-20221009165219132

思路:初始化两个空队列 q1与q2,当q1 或者 q2为空时,入队,两者都为空时,入队q1;

当弹出元素时,将其余size -1 个元素全部转移到另一个队列当中,剩余的一个元素出队即可,注意要将非空队列长度提前储存;取队首元素时,将出队列 1中的最后一个元素储存临时变量当中,返回临时变量即可

class MyStack {

    private Queue<Integer> qu1;
    private Queue<Integer> qu2;
    public MyStack() {
      qu1 = new LinkedList<>();
      qu2 = new LinkedList<>();
    }

    public void push(int x) {
        if(!qu1.isEmpty()){
            qu1.offer(x);
        }else if(!qu2.isEmpty()){
            qu2.offer(x);
        }else{
            qu1.offer(x);
        }
    }
    
    public int pop() {
       if(empty()){
           return -1;
       }
       if(!qu1.isEmpty()){
           int size = qu1.size()-1;
           for(int i = 0;i <size;i++){
               qu2.offer(qu1.poll());
           }
           return qu1.poll();
       }else{
            int size = qu2.size()-1;
           for(int i = 0;i <size;i++){
               qu1.offer(qu2.poll());
           }
           return qu2.poll();
       }
    }
    
    public int top() {
      if(empty()){
           return -1;
       }
       if(!qu1.isEmpty()){
           int size = qu1.size();
           int ret = -1;
           for(int i = 0;i <size;i++){
               ret = qu1.poll();
               qu2.offer(ret);
           }
           return ret;
       }else{
            int size = qu2.size();
            int ret = -1;
           for(int i = 0;i <size;i++){
               ret = qu2.poll();
               qu1.offer(ret);
           }
           return ret;
       }
    }
    
    public boolean empty() {
      return qu1.isEmpty()&&qu2.isEmpty();
    }
}
  • 栈的压入、弹出序列匹配问题
 /**
     * 栈的次序匹配问题
     * 判断出栈入栈是否符合
     * @param pushA
     * @param popA
     * @return
     */
    public boolean IsPopOrder(int [] pushA,int [] popA) {
        Stack<Integer> stack = new Stack<>();
        int j = 0;//遍历popA数组
        for(int  i = 0;i < pushA.length;i++) {
            stack.push(pushA[i]);
//            i下标所指元素直接入栈,入栈之后判断j下标所指元素是否相同
            while(j < popA.length && !stack.empty() && stack.peek() == popA[j]) {
//                如果是则出栈,j++
                stack.pop();
                j++;
            }
        }
//        如果此时栈为空,则满足,不为空则不满足
        return stack.empty();
    }
  • 括号匹配问题

image-20221011163030642

 /*
    * 括号匹配问题
    * */
    public boolean isValid(String s) {
        Stack<Character> stack = new Stack<>();
        for(int i = 0; i < s.length();i++) {
            char ch = s.charAt(i);
            //1. 判断是不是左括号
            if(ch == '(' || ch == '[' || ch == '{') {
                stack.push(ch);
            }else {
                if(stack.empty()) {
                    //2. 遇到了右括号 但是栈为空,此时不匹配!
                    return false;
                }
                char ch2 = stack.peek();
                //3。 此时 如果满足 这里面的任何一个匹配逻辑 都是匹配的
                if(ch2 == '[' && ch == ']' || ch2 == '(' && ch == ')' || ch2 == '{' && ch == '}') {
                    stack.pop();
                }else{
                    return false;
                }
            }
        }
        //4. 当字符串遍历完成了,但是栈不为空,说明左括号还在栈当中没有匹配完成
        if(!stack.empty()) {
            return false;
        }
        return true;
    }
}
  • 逆波兰表达式求值( 后缀表达式)
逆波兰表达式是一种后缀表达式,所谓后缀就是指算符写在后面。

平常使用的算式则是一种中缀表达式,如 ( 1 + 2 ) * ( 3 + 4 ) 。
该算式的逆波兰表达式写法为 ( ( 1 2 + ) ( 3 4 + ) * ) 。

(a+b)*c-(a+b)/e的后缀表达式为:

(a+b)*c-(a+b)/e

→((a+b)*c)((a+b)/e)-

→((a+b)c*)((a+b)e/)-

→(ab+c*)(ab+e/)-

→ab+c*ab+e/-

思路:构造一个判断运算符的函数,然后判断为数字则入栈,遇到运算符则弹出两个元素进行相关操作,将运算得到的结果再次入栈,直至将最后的元素弹出栈即为最后的结果。

( ( 1 2 + ) ( 3 4 + ) * )

1,2先入栈,遇到运算符+即出栈,1,2相加得3入栈,3,4同理得7入栈,最后遇到 * ,3,7出栈相乘得结果为21

代码实现:

  public int evalRPN(String[] tokens) {
        Stack<Integer> stack = new Stack<>();
      //字符数组进行遍历
        for(String x : tokens){
            if(!isOperation(x)){
                //使用parseInt()函数将字符串转换为整型
                stack.push(Integer.parseInt(x));
            }else{
                //如果遇到运算符,弹出数据进行相关操作
                int num2 = stack.pop();
                int num1  = stack.pop();
                switch(x){
                    case "+":
                        stack.push(num1+num2);
                        break;
                    case "-":
                        stack.push(num1 - num2);
                        break;
                    case "*":
                         stack.push(num1*num2);
                         break;
                    case "/":
                        stack.push(num1 / num2);
                        break;
                }
            }
        }
        return stack.pop();
    }
//判断是否为运算符
    private boolean isOperation(String s){
        if(s.equals("+")||s.equals("-")||s.equals("*")||s.equals("/")){
            return true;
        }else{
            return false;
        }
    }
  • 将递归转化为循环

如:逆序打印链表

  1. 递归实现逆序打印
 public void display(ListNode head){
        if(head == null){
            return;
        }
     //直到链表末尾,再归回去
        if(head.next == null){
            System.out.println(head.val+" ");
            return;
        }
        display(head.next);
        System.out.println(head.val+" ");
}
  1. 使用栈实现
public void display(ListNode head){
        if(head == null){
            return;
         }
        Stack<ListNode> stack  = new Stack<>();
        ListNode cur = head;
         while(cur!= null){
              stack.push(cur);
              cur = cur.next;
             }
        while(!stack.empty()){
            ListNode ret =   stack.pop();
            System.out.println(ret.val+" ");
        }
    }
利用栈先进后出的特性,将链表的节点都加入栈中,然后再依次出栈,并打印栈中节点的 val 的值,即实现了链表的逆序打印。

✅栈、虚拟机栈、栈帧有什么区别呢?

栈: 一种先进后出的数据结构

虚拟机栈:JVM中的一块内存空间

栈帧:再调用函数过程当中,在java 虚拟机栈上开辟的一块内存

  • 使用栈来实现队列

image-20221009161421102

思路:初始化两个空栈s1,s2 当实现入队操作时,即入栈 s1 即可,出栈时 如果s1不为空,将s1当中的元素进行出栈,并入栈到s2 中去,s2再进行出栈,即实现了队列先进先出的效果,当s1与s2 都为空时,则此队列为空。

class MyQueue {
    private Stack<Integer> s1;
    private Stack<Integer> s2;
    
    public MyQueue() {
    s1 = new Stack<>();
    s2 = new Stack<>();
    }
    
    public void push(int x) {
       s1.push(x);
    }
    public int pop() {
       if(empty()){
           return -1;
       }
       if(s2.empty()){
          while(!s1.empty()){
              s2.push(s1.pop());
          }
       }
       return s2.pop();
    } 
    
    public int peek() {
        if(empty()){
           return -1;
       }
       if(s2.empty()){
          while(!s1.empty()){
              s2.push(s1.pop());
          }
       }
       return s2.peek();
    }
    
    public boolean empty() {
      return s1.empty()&&s2.empty();
    }
}
  • 使用队列来实现栈

image-20221009165219132

思路:初始化两个空队列 q1与q2,当q1 或者 q2为空时,入队,两者都为空时,入队q1;

当弹出元素时,将其余size -1 个元素全部转移到另一个队列当中,剩余的一个元素出队即可,注意要将非空队列长度提前储存;取队首元素时,将出队列 1中的最后一个元素储存临时变量当中,返回临时变量即可

class MyStack {

    private Queue<Integer> qu1;
    private Queue<Integer> qu2;
    public MyStack() {
      qu1 = new LinkedList<>();
      qu2 = new LinkedList<>();
    }

    public void push(int x) {
        if(!qu1.isEmpty()){
            qu1.offer(x);
        }else if(!qu2.isEmpty()){
            qu2.offer(x);
        }else{
            qu1.offer(x);
        }
    }
    
    public int pop() {
       if(empty()){
           return -1;
       }
       if(!qu1.isEmpty()){
           int size = qu1.size()-1;
           for(int i = 0;i <size;i++){
               qu2.offer(qu1.poll());
           }
           return qu1.poll();
       }else{
            int size = qu2.size()-1;
           for(int i = 0;i <size;i++){
               qu1.offer(qu2.poll());
           }
           return qu2.poll();
       }
    }
    
    public int top() {
      if(empty()){
           return -1;
       }
       if(!qu1.isEmpty()){
           int size = qu1.size();
           int ret = -1;
           for(int i = 0;i <size;i++){
               ret = qu1.poll();
               qu2.offer(ret);
           }
           return ret;
       }else{
            int size = qu2.size();
            int ret = -1;
           for(int i = 0;i <size;i++){
               ret = qu2.poll();
               qu1.offer(ret);
           }
           return ret;
       }
    }
    
    public boolean empty() {
      return qu1.isEmpty()&&qu2.isEmpty();
    }
}
  • 栈的压入、弹出序列匹配问题
 /**
     * 栈的次序匹配问题
     * 判断出栈入栈是否符合
     * @param pushA
     * @param popA
     * @return
     */
    public boolean IsPopOrder(int [] pushA,int [] popA) {
        Stack<Integer> stack = new Stack<>();
        int j = 0;//遍历popA数组
        for(int  i = 0;i < pushA.length;i++) {
            stack.push(pushA[i]);
//            i下标所指元素直接入栈,入栈之后判断j下标所指元素是否相同
            while(j < popA.length && !stack.empty() && stack.peek() == popA[j]) {
//                如果是则出栈,j++
                stack.pop();
                j++;
            }
        }
//        如果此时栈为空,则满足,不为空则不满足
        return stack.empty();
    }
  • 括号匹配问题

image-20221011163030642

 /*
    * 括号匹配问题
    * */
    public boolean isValid(String s) {
        Stack<Character> stack = new Stack<>();
        for(int i = 0; i < s.length();i++) {
            char ch = s.charAt(i);
            //1. 判断是不是左括号
            if(ch == '(' || ch == '[' || ch == '{') {
                stack.push(ch);
            }else {
                if(stack.empty()) {
                    //2. 遇到了右括号 但是栈为空,此时不匹配!
                    return false;
                }
                char ch2 = stack.peek();
                //3。 此时 如果满足 这里面的任何一个匹配逻辑 都是匹配的
                if(ch2 == '[' && ch == ']' || ch2 == '(' && ch == ')' || ch2 == '{' && ch == '}') {
                    stack.pop();
                }else{
                    return false;
                }
            }
        }
        //4. 当字符串遍历完成了,但是栈不为空,说明左括号还在栈当中没有匹配完成
        if(!stack.empty()) {
            return false;
        }
        return true;
    }
}
相关文章
|
3月前
|
消息中间件 缓存 NoSQL
Redis各类数据结构详细介绍及其在Go语言Gin框架下实践应用
这只是利用Go语言和Gin框架与Redis交互最基础部分展示;根据具体业务需求可能需要更复杂查询、事务处理或订阅发布功能实现更多高级特性应用场景。
309 86
|
8月前
|
前端开发 Java
java实现队列数据结构代码详解
本文详细解析了Java中队列数据结构的实现,包括队列的基本概念、应用场景及代码实现。队列是一种遵循“先进先出”原则的线性结构,支持在队尾插入和队头删除操作。文章介绍了顺序队列与链式队列,并重点分析了循环队列的实现方式以解决溢出问题。通过具体代码示例(如`enqueue`入队和`dequeue`出队),展示了队列的操作逻辑,帮助读者深入理解其工作机制。
280 1
|
5月前
|
存储 监控 安全
企业上网监控系统中红黑树数据结构的 Python 算法实现与应用研究
企业上网监控系统需高效处理海量数据,传统数据结构存在性能瓶颈。红黑树通过自平衡机制,确保查找、插入、删除操作的时间复杂度稳定在 O(log n),适用于网络记录存储、设备信息维护及安全事件排序等场景。本文分析红黑树的理论基础、应用场景及 Python 实现,并探讨其在企业监控系统中的实践价值,提升系统性能与稳定性。
176 1
|
5月前
|
存储 监控 算法
公司员工泄密防护体系中跳表数据结构及其 Go 语言算法的应用研究
在数字化办公中,企业面临员工泄密风险。本文探讨使用跳表(Skip List)数据结构优化泄密防护系统,提升敏感数据监测效率。跳表以其高效的动态数据处理能力,为企业信息安全管理提供了可靠技术支持。
144 0
|
6月前
|
编译器 C语言 C++
栈区的非法访问导致的死循环(x64)
这段内容主要分析了一段C语言代码在VS2022中形成死循环的原因,涉及栈区内存布局和数组越界问题。代码中`arr[15]`越界访问,修改了变量`i`的值,导致`for`循环条件始终为真,形成死循环。原因是VS2022栈区从低地址到高地址分配内存,`arr`数组与`i`相邻,`arr[15]`恰好覆盖`i`的地址。而在VS2019中,栈区先分配高地址再分配低地址,因此相同代码表现不同。这说明编译器对栈区内存分配顺序的实现差异会导致程序行为不一致,需避免数组越界以确保代码健壮性。
140 0
栈区的非法访问导致的死循环(x64)
232.用栈实现队列,225. 用队列实现栈
在232题中,通过两个栈(`stIn`和`stOut`)模拟队列的先入先出(FIFO)行为。`push`操作将元素压入`stIn`,`pop`和`peek`操作则通过将`stIn`的元素转移到`stOut`来实现队列的顺序访问。 225题则是利用单个队列(`que`)模拟栈的后入先出(LIFO)特性。通过多次调整队列头部元素的位置,确保弹出顺序符合栈的要求。`top`操作直接返回队列尾部元素,`empty`判断队列是否为空。 两题均仅使用基础数据结构操作,展示了栈与队列之间的转换逻辑。
|
10月前
|
算法 调度 C++
STL——栈和队列和优先队列
通过以上对栈、队列和优先队列的详细解释和示例,希望能帮助读者更好地理解和应用这些重要的数据结构。
256 11
|
10月前
|
DataX
☀☀☀☀☀☀☀有关栈和队列应用的oj题讲解☼☼☼☼☼☼☼
### 简介 本文介绍了三种数据结构的实现方法:用两个队列实现栈、用两个栈实现队列以及设计循环队列。具体思路如下: 1. **用两个队列实现栈**: - 插入元素时,选择非空队列进行插入。 - 移除栈顶元素时,将非空队列中的元素依次转移到另一个队列,直到只剩下一个元素,然后弹出该元素。 - 判空条件为两个队列均为空。 2. **用两个栈实现队列**: - 插入元素时,选择非空栈进行插入。 - 移除队首元素时,将非空栈中的元素依次转移到另一个栈,再将这些元素重新放回原栈以保持顺序。 - 判空条件为两个栈均为空。
|
C语言
【数据结构】栈和队列(c语言实现)(附源码)
本文介绍了栈和队列两种数据结构。栈是一种只能在一端进行插入和删除操作的线性表,遵循“先进后出”原则;队列则在一端插入、另一端删除,遵循“先进先出”原则。文章详细讲解了栈和队列的结构定义、方法声明及实现,并提供了完整的代码示例。栈和队列在实际应用中非常广泛,如二叉树的层序遍历和快速排序的非递归实现等。
1056 9
|
存储 算法
非递归实现后序遍历时,如何避免栈溢出?
后序遍历的递归实现和非递归实现各有优缺点,在实际应用中需要根据具体的问题需求、二叉树的特点以及性能和空间的限制等因素来选择合适的实现方式。
307 59

热门文章

最新文章