深度学习神经网络的部署

简介: 1. ONNX的简介Open Neural Network Exchange(ONNX,开放神经网络交换)格式,是一个用于表示深度学习模型的标准,可使模型在不同框架之间进行转移(一般用于中间部署阶段)。

1. ONNX的简介

Open Neural Network Exchange(ONNX,开放神经网络交换)格式,是一个用于表示深度学习模型的标准,可使模型在不同框架之间进行转移(一般用于中间部署阶段)。

目前官方支持加载ONNX模型并进行推理的深度学习框架有: Caffe2,PyTorch,MXNet,ML.NET,TensorRT 和 Microsoft CNTK,并且 TensorFlow 也非官方的支持ONNX。


使用tensorrt的一般步骤

主要先是构建(bulid),之后是部署(development)


Build:该阶段主要完成模型转换(从caffe或TensorFlow到TensorRT),如下图所示,在模型转换时会完成前述优化过程中的层间融合,精度校准。这一步的输出是一个针对特定GPU平台和网络模型的优化过的TensorRT模型,这个TensorRT模型可以序列化存储到磁盘或内存中。存储到磁盘中的文件称之为 planfile。


Deploy:该阶段主要完成推理过程,如下图所示。将上一个步骤中的plan文件首先反序列化,并创建一个 runtime engine,然后就可以输入数据(比如测试集或数据集之外的图片),然后输出分类向量结果或检测结果。


以onnx模型为例检测介绍,主要分为3步,如下图所示,第一步是导入模型,这包括从磁盘上保存的文件加载模型,并将其从原始框架转换为TensorRT网络。ONNX是表示深度学习模型的标准,使它们能够在框架之间传输(Caffe2、Chainer、CNTK、paddle、PyTorch和MXNet都支持ONNX格式)。接下来,基于输入模型、目标GPU平台和指定的其他配置参数,构建一个优化的TensorRT引擎。最后一步是向TensorRT引擎提供输入数据以执行推理。

需要用的tensorrt的组件如下:

  • ONNX解析器:以ONNX格式的经过训练的模型作为输入,并用TensorRT填充网络对象
  • Builder:在TensorRT中获取一个网络并生成一个为目标平台优化的引擎
  • Engine:获取输入数据,执行推理并发出推理输出
  • Logger:与生成器和引擎关联的对象,用于在生成和推断阶段捕获错误、警告和其他信息

构架引擎步骤三部曲

创建bulider

通过builder创建一个空的TensorRT网络(Net)network()

构建一个onnx的解析器parser

with trt.Builder(TRT_LOGGER) as builder, \
      builder.create_network() as network,\
      trt.OnnxParser(network, TRT_LOGGER) as parser:

builder介绍

builder功能之一是搜索cuda内核目录,找到最快的cuda以求获得最快的实现,因此有必要使用相同的GPU进行构建(相同的操作,算子进行融合,减少IO操作),engine就是在此基础上运行的,builder还可以控制网络以什么精度运行(FP32,FP16,INT8),还有两个特别重要的属性是最大批处理大小和最大工作空间大小。

builder.max_workspace_size = 1<< 30
builder.max_batch_size = max_batch_size

它的作用是给出模型中任一层能使用的内存上限。运行时,每一层需要多少内存系统分配多少,并不是每次都分 1 GB,但不会超过 1 GB。 就是 2^30 bytes 即 1 GB。


默认使用FP32加速,即只是图优化等操作,不进行量化或降精度。设置FP16和int9_mode十分简单,一行代码即可:

builder.fp16_mode = fp16_mode  # Default: False
builder.int8_mode = int8_mode  # Default: False

判断是否有parse model文件(onnx)

if not os.path.exists(onnx_file_path):
  quit('ONNX file {} not found'.format(onnx_file_path))
print('Loading ONNX file from path {}...'.format(onnx_file_path))

正常输出为

Loading ONNX file from path ./model.onnx...
• 1

开始onnx的文件解析

with open(onnx_file_path, 'rb') as model:
    print('Beginning ONNX file parsing')
    parser.parse(model.read())
   #for each_line in model:  #可以打印出来观看及鞥
       #print(each_line)

对注释部分的打印结果描述是:

Beginning ONNX file parsing
b'\x08\x04\x12\x07pytorch\x1a\x031.2:\xdc\xcb\x06\n'
b'\x8a\x01\n'
b'\x05input\n'
b'\rlayer1.weight\n'
b'\x0blayer1.bias\x12\x017"\x04Conv*\x12\n'
b'\tdilations@\x01@\x01\xa0\x01\x07*\x0c\n'
b'\x05group\x18\x01\xa0\x01\x02*\x15\n'
b'\x0ckernel_shape@\x03@\x03\xa0\x01\x07*\x11\n'
b'\x04pads@\x00@\x00@\x00@\x00\xa0\x01\x07*\x10\n'
b'\x07strides@\x01@\x01\xa0\x01\x07\n'
b'\x0c\n'
b'\x017\x12\x018"\x04Relu\n'
b'K\n'
b'\x018\x12\x019"\x07MaxPool*\x15\n'
b'\x0ckernel_shape@\x03@\x03\xa0\x01\x07*\x11\n'
b'\x04pads@\x00@\x00@\x00@\x00\xa0\x01\x07*\x10\n'
b'\x07strides@\x01@\x01\xa0\x01\x07\n'
b'\x87\x01\n'
......................后面还有很多......................结束

已经完成onnx文件解析,

print('Completed parsing of ONNX file')
print('Building an engine from file {}; this may take a while...'.format(onnx_file_path))

输出结果

Completed parsing of ONNX file
Building an engine from file ./model.onnx; this may take a while...
相关文章
|
21天前
|
机器学习/深度学习 人工智能 算法框架/工具
深度学习中的卷积神经网络(CNN)入门
【10月更文挑战第41天】在人工智能的璀璨星空下,卷积神经网络(CNN)如一颗耀眼的新星,照亮了图像处理和视觉识别的路径。本文将深入浅出地介绍CNN的基本概念、核心结构和工作原理,同时提供代码示例,带领初学者轻松步入这一神秘而又充满无限可能的领域。
|
27天前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习中的卷积神经网络:从理论到实践
【10月更文挑战第35天】在人工智能的浪潮中,深度学习技术以其强大的数据处理能力成为科技界的宠儿。其中,卷积神经网络(CNN)作为深度学习的一个重要分支,在图像识别和视频分析等领域展现出了惊人的潜力。本文将深入浅出地介绍CNN的工作原理,并结合实际代码示例,带领读者从零开始构建一个简单的CNN模型,探索其在图像分类任务中的应用。通过本文,读者不仅能够理解CNN背后的数学原理,还能学会如何利用现代深度学习框架实现自己的CNN模型。
|
26天前
|
机器学习/深度学习 人工智能 算法框架/工具
深度学习中的卷积神经网络(CNN)及其在图像识别中的应用
【10月更文挑战第36天】探索卷积神经网络(CNN)的神秘面纱,揭示其在图像识别领域的威力。本文将带你了解CNN的核心概念,并通过实际代码示例,展示如何构建和训练一个简单的CNN模型。无论你是深度学习的初学者还是希望深化理解,这篇文章都将为你提供有价值的见解。
|
24天前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
垃圾识别分类系统。本系统采用Python作为主要编程语言,通过收集了5种常见的垃圾数据集('塑料', '玻璃', '纸张', '纸板', '金属'),然后基于TensorFlow搭建卷积神经网络算法模型,通过对图像数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。然后使用Django搭建Web网页端可视化操作界面,实现用户在网页端上传一张垃圾图片识别其名称。
71 0
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
|
12天前
|
机器学习/深度学习 人工智能 自然语言处理
深入理解深度学习中的卷积神经网络(CNN)
深入理解深度学习中的卷积神经网络(CNN)
|
1月前
|
机器学习/深度学习 搜索推荐 安全
深度学习之社交网络中的社区检测
在社交网络分析中,社区检测是一项核心任务,旨在将网络中的节点(用户)划分为具有高内部连接密度且相对独立的子群。基于深度学习的社区检测方法,通过捕获复杂的网络结构信息和节点特征,在传统方法基础上实现了更准确、更具鲁棒性的社区划分。
61 7
|
1月前
|
机器学习/深度学习 自然语言处理 TensorFlow
深度学习的奥秘:探索神经网络背后的魔法
【10月更文挑战第22天】本文将带你走进深度学习的世界,揭示神经网络背后的神秘面纱。我们将一起探讨深度学习的基本原理,以及如何通过编程实现一个简单的神经网络。无论你是初学者还是有一定基础的学习者,这篇文章都将为你提供有价值的信息和启示。让我们一起踏上这段奇妙的旅程吧!
|
1月前
|
机器学习/深度学习 人工智能 算法
【车辆车型识别】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+算法模型
车辆车型识别,使用Python作为主要编程语言,通过收集多种车辆车型图像数据集,然后基于TensorFlow搭建卷积网络算法模型,并对数据集进行训练,最后得到一个识别精度较高的模型文件。再基于Django搭建web网页端操作界面,实现用户上传一张车辆图片识别其类型。
79 0
【车辆车型识别】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+算法模型
|
27天前
|
机器学习/深度学习 人工智能 自动驾驶
深入解析深度学习中的卷积神经网络(CNN)
深入解析深度学习中的卷积神经网络(CNN)
41 0
|
29天前
|
机器学习/深度学习 人工智能 自动驾驶
深度学习的奇迹:如何用神经网络识别图像
【10月更文挑战第33天】在这篇文章中,我们将探索深度学习的奇妙世界,特别是卷积神经网络(CNN)在图像识别中的应用。我们将通过一个简单的代码示例,展示如何使用Python和Keras库构建一个能够识别手写数字的神经网络。这不仅是对深度学习概念的直观介绍,也是对技术实践的一次尝试。让我们一起踏上这段探索之旅,看看数据、模型和代码是如何交织在一起,创造出令人惊叹的结果。
29 0