**反向传播算法**在多层神经网络训练中至关重要,它包括**前向传播**、**计算损失**、**反向传播误差**和**权重更新**。

简介: 【6月更文挑战第28天】**反向传播算法**在多层神经网络训练中至关重要,它包括**前向传播**、**计算损失**、**反向传播误差**和**权重更新**。数据从输入层流经隐藏层到输出层,计算预测值。接着,比较预测与真实值计算损失。然后,从输出层开始,利用链式法则反向计算误差和梯度,更新权重以减小损失。此过程迭代进行,直到损失收敛或达到训练次数,优化模型性能。反向传播实现了自动微分,使模型能适应训练数据并泛化到新数据。

反向传播算法(Backpropagation Algorithm)是训练人工神经网络中最为广泛使用的算法之一,特别是在多层前馈神经网络中。以下是反向传播算法的基本工作原理:

  1. 前向传播(Feedforward)阶段

    • 输入数据首先通过网络的输入层进入,经过一系列的隐藏层(如果有),最后到达输出层。
    • 在每个神经元上,都会执行一个线性组合(加权求和),加上一个偏置项,然后通过一个激活函数(如Sigmoid、ReLU等)产生输出。这个过程沿着神经网络从前向后逐层进行,形成网络的预测输出。
  2. 计算损失(Loss Computation)

    • 将模型的实际输出与真实的期望输出(标记值)进行比较,计算损失函数的值,例如均方误差(MSE)用于回归任务,交叉熵损失用于分类任务。
  3. 反向传播(Backward Propagation)阶段

    • 误差计算:从输出层开始,计算实际输出与目标输出之间的误差(也称为残差)。误差信号通常表示为损失函数相对于输出神经元激活值的偏导数。
    • 梯度计算:利用链式法则(Chain Rule)将误差反向传播到网络中的每一层。对于每一个权重和偏置项,我们计算损失函数对该权重或偏置的梯度,这是损失函数关于该参数的局部变化率。
    • 权重更新:一旦获得了所有权重和偏置的梯度,就可以使用优化算法(如梯度下降法)来更新这些参数。通常,我们会按照梯度的负方向调整权重,以减小损失函数的值,从而使模型在下一次迭代时更接近最优解。
  4. 迭代过程

    • 反复进行以上步骤,即每次通过前向传播计算预测结果,再通过反向传播计算梯度并更新参数,直到损失函数收敛到一定程度,或者达到预定的训练轮数。

简而言之,反向传播算法的核心是通过遍历网络从后往前逐层计算梯度,然后使用这些梯度信息调整网络的权重和偏置,以逐步优化模型的性能。这个过程是自动微分在神经网络训练中的应用,它让模型能够自我调整,以期拟合训练数据,并在新的未知数据上具备良好的泛化能力。

目录
相关文章
|
23天前
|
机器学习/深度学习
神经网络各种层的输入输出尺寸计算
神经网络各种层的输入输出尺寸计算
31 1
WK
|
7天前
|
机器学习/深度学习 算法
神经网络的反向传播是什么
反向传播(Backpropagation)是用于训练神经网络的一种关键算法,其目标是通过计算损失函数关于网络参数的梯度来优化这些参数,从而提升网络性能。该算法包括前向传播和反向传播两个阶段:前者计算预测结果与损失值,后者利用链式法则逐层计算梯度以更新权重和偏置。作为深度学习中最常用的优化方法之一,反向传播广泛应用于多种神经网络模型中,通过不断迭代改进模型的预测准确性和泛化能力。
WK
15 5
|
9天前
|
机器学习/深度学习
小土堆-pytorch-神经网络-损失函数与反向传播_笔记
在使用损失函数时,关键在于匹配输入和输出形状。例如,在L1Loss中,输入形状中的N代表批量大小。以下是具体示例:对于相同形状的输入和目标张量,L1Loss默认计算差值并求平均;此外,均方误差(MSE)也是常用损失函数。实战中,损失函数用于计算模型输出与真实标签间的差距,并通过反向传播更新模型参数。
|
18天前
|
算法 数据可视化 数据安全/隐私保护
基于LK光流提取算法的图像序列晃动程度计算matlab仿真
该算法基于Lucas-Kanade光流方法,用于计算图像序列的晃动程度。通过计算相邻帧间的光流场并定义晃动程度指标(如RMS),可量化图像晃动。此版本适用于Matlab 2022a,提供详细中文注释与操作视频。完整代码无水印。
WK
|
12天前
|
机器学习/深度学习
在神经网络的反向传播中,Tanh和Sigmoid哪个更快
在神经网络反向传播中,Tanh与Sigmoid函数的速度差异并无定论,受网络结构、数据特性及参数设置影响。Sigmoid在远离零时易导致梯度消失,而Tanh因输出范围为(-1, 1)且以0为中心,能更好地缓解此问题,理论上训练速度更快。两者计算复杂度相近,现代硬件优化使这一差距不明显。实际应用中,Sigmoid常用于二分类输出层,Tanh则适用于隐藏层以加速收敛并减少权重更新偏向。随着深度学习发展,ReLU等新激活函数因高效性和轻度梯度消失问题成为主流选择。综合来看,Tanh可能比Sigmoid稍快,但需根据具体任务和网络结构选择。
WK
23 0
|
1月前
|
机器学习/深度学习 存储 自然语言处理
天啊!深度神经网络中 BNN 和 DNN 基于存内计算的传奇之旅,改写能量效率的历史!
【8月更文挑战第12天】深度神经网络(DNN)近年在图像识别等多领域取得重大突破。二进制神经网络(BNN)作为DNN的轻量化版本,通过使用二进制权重和激活值极大地降低了计算复杂度与存储需求。存内计算技术进一步提升了BNN和DNN的能效比,通过在存储单元直接进行计算减少数据传输带来的能耗。尽管面临精度和硬件实现等挑战,BNN结合存内计算代表了深度学习未来高效节能的发展方向。
31 1
|
1月前
|
算法 Go Python
[算法]计算斐波拉契数列
[算法]计算斐波拉契数列
|
2月前
knn增强数据训练
【7月更文挑战第27天】
27 10
|
2月前
|
数据采集 编解码 人工智能
破解ChatGPT惊人耗电!DeepMind新算法训练提效13倍,能耗暴降10倍
【7月更文挑战第19天】DeepMind的JEST算法革新AI训练,提升效率13倍,节能10倍。通过联合数据批次选择,预训练指导及多分辨率训练,优化资源利用,降低能耗。实验显示性能提升,达到SOTA水平,但实施需大量资源,依赖优质参考模型。[论文链接](https://arxiv.org/pdf/2406.17711)
53 10
|
2月前
knn增强数据训练
【7月更文挑战第28天】
19 2