为什么AI总是很难落地?

本文涉及的产品
Web应用防火墙 3.0,每月20元额度 3个月
云安全中心漏洞修复资源包免费试用,100次1年
云安全中心 免费版,不限时长
简介: 飞机落地需要空中交通管制和航道,AI落地也需要管理和方法。飞机安全落地常常与物理域的参数密切相关,而AI的落地会更复杂,不仅需要物理域的参数有关,还与认知域的指标、信息域的表征有关,不仅与大脑有关,还与各种对象、环境的变化有关。

为什么AI总是很难落地?为什么人工智能常常被人诟病?有人说这是由于科幻电影、科幻小说、电子游戏、新闻媒体等造成的,这个观点有一定的合理成分,但还有一个更重要的事实为大家所忽略,那就是本应为“人机环境系统融合智能”常常被误认为是“人工智能(甚至是一些算法)”所致。
image.png
生命和机器虽然都可以作为认知的载体,但认知的性质是不同的。一个是生命的认知,一个是机器的认知,是特定人对特定事物的认知。人机智能解决的重点是方向和风险,人机工效解决的是过程和效率。计算-算计的机制机理构建是人机混合智能突破关键。群体智能的关键在于三体以上的协调逻辑构建,而三体逻辑构建已超出了形式化计算逻辑的范围,需要建立形式化算计逻辑体系。

无论是复杂还是简单,无论是自动化产品还是智能系统,大凡接地气,并为众人所接受的喜闻乐见,仔细想想,无不是在安全、高效、舒适方面做的比较好些。而要具备这些优点,其人、机、环境系统大都比较和谐一致,至少不是简单的AI+某某领域或者是某某领域+智能算法。前段时间写了一篇“智能的本质好像不是数据算法算力和知识”,强调生成这些的机理才是活生生的智能之源,这次还接着谈,现有的人工智能教育体系培养出的“人才”可能还是没有“魂魄”的“机器人”,究其因,还是干巴巴的“算法”所致,有算无法,有术无道,有感无知,有理无情,有态无势,有芝无瓜,有(类)脑无心,有形无意,有眼无珠……只能在可能性的圈圈里打转转,而不能尝试探索不可能的世界,即使有些探索,也还只是在家族相似性的河床上蹦蹦跳跳,而对真实的非家族相似性还远远无能为力。除了人机环境系统交互之外,第二个方面就是对深度态势感知的理解和消化,比如很多情境下只知道时空之间的配准、校正,不明白态、势、感、知之间的配准与校正;只知道非协同距离的失真解算,却忘了协同距离的模糊展开;只知道变频、变量,不思考变态、变势、变感、变知、变通;只知道数据链、信息链,不琢磨事实链和价值链,甚至是态链、势链、感链、知链的纠缠叠加所形成的人机环境系统链;只知道同质、均匀、顺序的态势感知单一调制,而忽略了更重要的异质、非均匀、随机态势感知多级阵列,以及先感后知的快速机动性和先知后感的准确灵活性,还有态、势、感、知之间的自相关、互相关的转化概率;只知道人模机样,不晓得机模人样;只知道仿真验证结构,不重视实战得到功能。原因之三:一些事情发生了,我们不时会自觉或不自觉地与身边的刚刚发生或印象比较深的事物关联在一起,建立自己个性化的“因果关系”态势谱(不仅是图谱),的确有关的被称为客观事实性关联,似是而非的称之为可能性关联,风马牛不相及的被称为主观意向性关联……这些生活中的常常发生的关联都是智能认知的组成部分,能够程序化的客观事实性关联部分也往往被称为AI,可能性关联和主观意向性关联却被过滤掉了,而这两者却是个性化智能之所以弹性的重要组成成分吧。总之,本是人机环境复杂系统的问题却想用AI算法简化处理;只知道态势感知,不明白深度态势感知;忽略风马牛之间的虫洞联系;这三个问题也可能是造成AI总是很难落地的诱因吧!
DARPA的无人机大战有人机——“狗斗”测试刚刚结束,热闹过后,从测试后的回顾来看,AI获胜的关键在于极强的攻击性和射击的准确性,但问题主要在于判断存在失误。据美军测试人员的说法,测试中的AI系统经常在基本的战斗机机动中犯错误,AI不止一次地将飞机转向到其认为人类对手飞机会去的方向,但多次都被证明错判了人类飞行员的想法。这也不难理解,人类飞行员判断对手意图都经常出错,更何况AI系统缺的就是对创造性战术的理解能力,出现这类失误并不奇怪。然而,由于其"卓越的瞄准能力"和追踪对手飞机的能力,AI在整体上仍然能够保持对人类飞行员的优势,电脑系统最终在整个对抗中占据上风。

简而言之,无人机AI在“态”的精度和“感”的速度上占得先机,但在“势”的判断和“知”的预测上还不具备优势。建议以后的有人机飞行员多在假动作(就像乔丹、科比、詹姆斯那样)、打破规则(如同孙子、诸葛亮、粟裕一般)方面上狠下功夫吧!没有了规则,所有的算法和(数学)模型就会失去了边界、条件和约束,所有的计算就不再精确和可靠,当概率公式从算计变成了算命,机器的优势也许就不如人了吧?!

人是价值性决策——论大是大非而不仅仅是计算得失;机器是事实性决策——论得失加减,而不是是非曲直。态、势之间与感、知之间的都是量和质的关系,其中的"势"即一定时期内的最大可能性。凡是在“势”中的,没有不是先已在“态”中的;凡是在“知”中的,没有不是先已在“感”中的。正可谓:星星之火可以燎原。如果目标明确,在与控制单元和装备组成的大系统博弈,对手应是或只能是相应的系统,不是操作装备的人,或者说是设计、操控系统的人。这方面,我们有很大的弱项。关键是开发环境下长中短期目标的动态变化会造成目标的不明确乃至模糊。

现在的人工智能就像高铁一样,速度很快,但是需要轨道,而真正的智能应该像飞机那样,只要能达到目的地,不需要特定的轨道和航线。态势感知的误差分为态、势、感、知方面的误差,也可分为事实性/价值性误差。人工智能在武器上的应用主要体现在机器对机器的任务布置和武器的实时重新瞄准上,这种对典型“服务提供者”的效果优先级排序将在战术层面执行,取决于智能化机器能否消化和分析来自整个战场的数据。事实上,人机功能分配中事实性与价值性的数据、信息、知识、责任、意向、情感混合/融合排序展开进行才是未来的有人-无人对抗之焦点和难点吧!

相关文章
|
7月前
|
机器学习/深度学习 人工智能 自然语言处理
【AI 现况分析】AI 如何提高开发效率,在生产中的实践
【1月更文挑战第27天】【AI 现况分析】AI 如何提高开发效率,在生产中的实践
|
7月前
|
传感器 机器学习/深度学习 人工智能
【AI 现况分析】AI 如何落地到机器人技术上?
【1月更文挑战第27天】【AI 现况分析】AI 如何落地到机器人技术上?
|
25天前
|
机器学习/深度学习 人工智能 自然语言处理
当前AI大模型在软件开发中的创新应用与挑战
2024年,AI大模型在软件开发领域的应用正重塑传统流程,从自动化编码、智能协作到代码审查和测试,显著提升了开发效率和代码质量。然而,技术挑战、伦理安全及模型可解释性等问题仍需解决。未来,AI将继续推动软件开发向更高效、智能化方向发展。
|
2月前
|
机器学习/深度学习 人工智能 开发框架
【AI系统】AI 学习方法与算法现状
在人工智能的历史长河中,我们见证了从规则驱动系统到现代机器学习模型的转变。AI的学习方法基于深度神经网络,通过前向传播、反向传播和梯度更新不断优化权重,实现从训练到推理的过程。当前,AI算法如CNN、RNN、GNN和GAN等在各自领域取得突破,推动技术进步的同时也带来了更大的挑战,要求算法工程师与系统设计师紧密合作,共同拓展AI技术的边界。
103 1
|
3月前
|
人工智能 自然语言处理 搜索推荐
AI新纪元:ChatGPT如何重塑我们的工作与生活方式?
【9月更文挑战第1天】ChatGPT作为AI领域的新星正逐步改变着我们的工作与生活方式。它以其强大的自然语言处理能力和广泛的应用潜力为我们带来了诸多便利和机遇。然而我们也应清醒地认识到其中存在的挑战和风险。在未来的发展中我们需要不断探索和完善AI技术以实现人机和谐共生的美好愿景。
|
5月前
|
人工智能 IDE Devops
当「软件研发」遇上 AI 大模型
大模型和软件工具链的结合,使软件研发进入下一个时代。那它第一个落脚点在哪?实际上就是辅助编程,所以我们就开始打造了通义灵码这款产品,它是一个基于代码大模型的的 AI 辅助工具。本文会分为三个部分来分享。第一部分先介绍 AIGC 对软件研发的根本性影响,从宏观上介绍当下的趋势;第二部分将介绍 Copilot 模式,第三部分是未来软件研发 Agent 产品的进展。
208 12
|
4月前
|
机器学习/深度学习 人工智能 自动驾驶
如何面对AI的“不确定时代”
如何面对AI的“不确定时代”
|
4月前
|
人工智能 数据中心 芯片
云与AI新趋势问题之大模型AI的成功应用案例如何解决
云与AI新趋势问题之大模型AI的成功应用案例如何解决
34 0
|
6月前
|
人工智能 搜索推荐 机器人
AI发展已经一段时间了,当前社会身边哪些功能已经在运用了AI技术?未来AI技术还将有哪些地方会运用?
AI技术现已被广泛应用在智能家居(如自动化控制与安全)、个性化教育(定制化学习与辅助教学)、精准医疗(疾病诊断与药物研发)、智能服务(如智能客服)和金融服务(风险评估)等领域。未来,预计AI将在AI PC、人机协创、超级视野、机器人和零搜索等领域发挥更大作用,实现信息主动推送、无缝沟通和创新服务。随着技术进步,AI将持续影响并改变我们的生活。【6月更文挑战第2天】
151 0
|
7月前
|
机器学习/深度学习 人工智能 算法
XAI:探索AI决策透明化的前沿与展望
XAI:探索AI决策透明化的前沿与展望