【笔记】开发指南—SQL调优指南—SQL调优进阶—查询执行器介绍

简介: 本文介绍PolarDB-X的SQL执行器如何执行SQL中无法下推的部分。

基本概念

SQL执行器是PolarDB-X中执行逻辑层算子的组件。对于简单的点查SQL,往往可以整体下推存储层MySQL执行,因而感觉不到执行器的存在,MySQL的结果经过简单的解包封包又被回传给用户。但是对于较复杂的SQL,往往无法将SQL中的算子全部下推,这时候就需要PolarDB-X执行器执行无法下推的计算。


SELECT l_orderkey, sum(l_extendedprice *(1 - l_discount)) AS revenue
FROM CUSTOMER, ORDERS, LINEITEM
WHERE c_mktsegment = 'AUTOMOBILE'
  and c_custkey = o_custkey
  and l_orderkey = o_orderkey
  and o_orderdate < '1995-03-13'
  and l_shipdate > '1995-03-13'
GROUP BY l_orderkey;

通过EXPLAIN命令看到PolarDB-X的执行计划如下:


HashAgg(group="l_orderkey", revenue="SUM(*)")

HashJoin(condition="o_custkey = c_custkey", type="inner")
Gather(concurrent=true)
LogicalView(tables="ORDERS_[0-7],LINEITEM_[0-7]", shardCount=8, sql="SELECT `ORDERS`.`o_custkey`, `LINEITEM`.`l_orderkey`, (`LINEITEM`.`l_extendedprice` * (? - `LINEITEM`.`l_discount`)) AS `x` FROM `ORDERS` AS `ORDERS` INNER JOIN `LINEITEM` AS `LINEITEM` ON (((`ORDERS`.`o_orderkey` = `LINEITEM`.`l_orderkey`) AND (`ORDERS`.`o_orderdate` < ?)) AND (`LINEITEM`.`l_shipdate` > ?))")
Gather(concurrent=true)
LogicalView(tables="CUSTOMER_[0-7]", shardCount=8, sql="SELECT `c_custkey` FROM `CUSTOMER` AS `CUSTOMER` WHERE (`c_mktsegment` = ?)")

如下图所示,LogicalView的SQL在执行时被下发给MySQL,而不能下推的部分(除LogicalView以外的算子)由PolarDB-X执行器进行计算,得到最终用户SQL需要的结果。1.3.png

执行模型

与传统数据库采用Volcano执行模型不一样,PolarDB-X采样的是Pull~Push混合执行模型。所有算子按照计算过程中是否需要缓存临时表,将执行过程切分成多个pipeline,pipeline内部采样next()接口,按批获取数据,完成在pipeline内部的计算,pipeline间采用push接口,上游pipeline在计算完成后,会将数据源源不断推送给下游pipeline做计算。下面的例子中,被切分成两个pipeline,在pipeline-A中扫描Table-A数据,完成构建哈希表。Pipeline-B扫描Table-B的数据,然后在HashJoin算子内部做关联得到JOIN结果,再返回客户端。1.5.png

执行模式

目前 PolarDB-X 支持了三种执行模式:

  • 单机单线程(TP_LOCAL):查询过程中,是单线程计算,TP负载的查询涉及到的扫描行数比较少,往往会采用这种执行模式,比如基于主键的点查。
  • 单机并行(AP_LOCAL):查询过程中,会利用节点的多核资源做并行计算,如果您没有配置只读实例,针对AP负载的查询,往往会采样这种执行模式,一般也称之为Parallel Query模式。
  • 多机并行(MPP):您如果配置了只读实例,针对AP负载的查询,可以协调只读实例上多个节点的多核做分布式多机并行加速。

为了准确知道执行模式,在原有EXPLAIN和执行计划的基础上,扩展了EXPLAIN PHYSICAL例如以下查询,通过指令可以查看当前查询采样的是MPP模式,此外还可以获取到每个执行片段的并发数。


mysql> explain physical select a.k, count(*) cnt from sbtest1 a, sbtest1 b where a.id = b.k and a.id > 1000 group by k having cnt > 1300 or
der by cnt limit 5, 10;
+-------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| PLAN                                                                                                                                                              |
+-------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| ExecutorType: MPP                                                                                                                                                 |
| The Query's MaxConcurrentParallelism: 2                                                                                                                           |
| Fragment 1                                                                                                                                                        |
|     Shuffle Output layout: [BIGINT, BIGINT] Output layout: [BIGINT, BIGINT]                                                                                       |
|     Output partitioning: SINGLE [] Parallelism: 1                                                                                                                 |
|     TopN(sort="cnt ASC", offset=?2, fetch=?3)                                                                                                                     |
|   Filter(condition="cnt > ?1")                                                                                                                                    |
|     HashAgg(group="k", cnt="COUNT()")                                                                                                                             |
|       BKAJoin(condition="k = id", type="inner")                                                                                                                   |
|         RemoteSource(sourceFragmentIds=[0], type=RecordType(INTEGER_UNSIGNED id, INTEGER_UNSIGNED k))                                                             |
|         Gather(concurrent=true)                                                                                                                                   |
|           LogicalView(tables="[000000-000003].sbtest1_[00-15]", shardCount=16, sql="SELECT `k` FROM `sbtest1` AS `sbtest1` WHERE ((`k` > ?) AND (`k` IN (...)))") |
| Fragment 0                                                                                                                                                        |
|     Shuffle Output layout: [BIGINT, BIGINT] Output layout: [BIGINT, BIGINT]                                                                                       |
|     Output partitioning: SINGLE [] Parallelism: 1 Splits: 16                                                                                                      |
|     LogicalView(tables="[000000-000003].sbtest1_[00-15]", shardCount=16, sql="SELECT `id`, `k` FROM `sbtest1` AS `sbtest1` WHERE (`id` > ?)")                     |
+-------------------------------------------------------------------------------------------------------------------------------------------------------------------+

同样的也允许您通过HINT EXECUTOR_MODE指定执行模式。比如主实例空闲资源很多,可以考虑强制设置为单机或者多机并行模式来加速。


mysql> explain physical /*+TDDL:EXECUTOR_MODE=AP_LOCAL*/select a.k, count(*) cnt from sbtest1 a, sbtest1 b where a.id = b.k and a.id > 1000 group by k having cnt > 1300 order by cnt limit 5, 10;                                                                                                                                                     |

+-------------------------------------------------------------------------------------------------------------------------------------------------------------+
| ExecutorMode: AP_LOCAL |
| Fragment 0 dependency: [] parallelism: 4 |
| BKAJoin(condition="k = id", type="inner") |
| Gather(concurrent=true) |
| LogicalView(tables="[000000-000003].sbtest1_[00-15]", shardCount=16, sql="SELECT `id`, `k` FROM `sbtest1` AS `sbtest1` WHERE (`id` > ?)") |
| Gather(concurrent=true) |
| LogicalView(tables="[000000-000003].sbtest1_[00-15]", shardCount=16, sql="SELECT `k` FROM `sbtest1` AS `sbtest1` WHERE ((`k` > ?) AND (`k` IN (...)))") |
| Fragment 1 dependency: [] parallelism: 8 |
| LocalBuffer |
| RemoteSource(sourceFragmentIds=[0], type=RecordType(INTEGER_UNSIGNED id, INTEGER_UNSIGNED k, INTEGER_UNSIGNED k0)) |
| Fragment 2 dependency: [0, 1] parallelism: 8 |
| Filter(condition="cnt > ?1") |
| HashAgg(group="k", cnt="COUNT()") |
| RemoteSource(sourceFragmentIds=[1], type=RecordType(INTEGER_UNSIGNED id, INTEGER_UNSIGNED k, INTEGER_UNSIGNED k0)) |
| Fragment 3 dependency: [0, 1] parallelism: 1 |
| LocalBuffer |
| RemoteSource(sourceFragmentIds=[2], type=RecordType(INTEGER_UNSIGNED k, BIGINT cnt)) |
| Fragment 4 dependency: [2, 3] parallelism: 1 |
| TopN(sort="cnt ASC", offset=?2, fetch=?3) |
| RemoteSource(sourceFragmentIds=[3], type=RecordType(INTEGER_UNSIGNED k, BIGINT cnt)) |
+-------------------------------------------------------------------------------------------------------------------------------------------------------------+

在多机并行MPP执行模式的并发度是根据物理扫描行数、实例规格和计算所涉及到表的分表数来计算出来的,整体的并行度要考虑高并发场景,所以并行度的计算会偏保守,您可以通过上述EXPLAIN PHYSICAL指令查看并行度。也同样支持HINT MPP_PARALLELISM强制指定并行度。


/+TDDL:EXECUTOR_MODE=MPP MPP_PARALLELISM=8/select a.k, count(*) cnt from sbtest1 a, sbtest1 b where a.id = b.k and a
相关文章
|
消息中间件 运维 Kafka
运维排查 | Systemd 之服务停止后状态为 failed
运维排查 | Systemd 之服务停止后状态为 failed
|
数据安全/隐私保护 iOS开发 MacOS
Mac中使用命令行来加密压缩zip文档
Mac中使用命令行来加密压缩zip文档
440 0
|
机器学习/深度学习 算法 决策智能
【深度学习】遗传算法
【深度学习】遗传算法
|
存储 弹性计算 负载均衡
自己买服务器还是租赁云服务器好?附2024年阿里云云服务器优惠价格表
随着技术的飞速发展,无论是个人还是企业,在面临选择服务器的问题时都会陷入纠结:究竟是自己购买服务器还是租赁云服务器更为合适? 云服务器的灵活性成为其显著优势。想象一下,当您的业务突然迎来爆发式增长,需要更多的计算和存储资源时,云服务器允许您按需购买,随时扩展或缩小规模,轻松应对各种变化。此外,云服务器还能迅速提供负载均衡、CDN等新的应用程序或服务,助力您的业务快速发展。
744 1
|
存储 小程序 定位技术
微信小程序获取用户信息流程
微信小程序获取用户信息流程
|
C++
C++的引用 拷贝赋值和引用赋值
C++的引用 拷贝赋值和引用赋值
551 0
|
存储 JavaScript 前端开发
部署看板娘到vue项目(前后端整合)
部署看板娘到vue项目(前后端整合)
525 0
|
JavaScript Java 关系型数据库
ssm物流快递管理系统
通篇文章的撰写基础是实际的应用需要,然后在架构系统之前全面复习大学所修习的相关知识以及网络提供的技术应用教程,以物流快递管理的实际应用需要出发,架构系统来改善现物流快递管理工作流程繁琐等问题。不仅如此以操作者的角度来说,该系统的架构能够对物流快递进行有效的管理。本系统是利用ssm框架而设计的一款结合用户的实际情况而设计的平台,利用VUE技术来将可供用户和管理员来使用的所有界面来显示出来,利用Java语言技术来编程实现用户和管理员所执行的各类操作业务逻辑,以MySQL数据库来存取系统的数据,以管理员角色登入系统能够更加轻松简易的完成对系统内部所有的数据信息&#xff08;个人中心信息,物流站点信
266 0
|
机器学习/深度学习 存储 分布式计算
《Apache Flink 案例集(2022版)》——3.机器学习——奇安信-如何设计信息安全领域的实时安全基线引擎(2)
《Apache Flink 案例集(2022版)》——3.机器学习——奇安信-如何设计信息安全领域的实时安全基线引擎(2)
634 0
|
JSON 前端开发 测试技术
【瑞吉外卖】day07:新增套餐、套餐分页查询、 删除套餐(二)
【瑞吉外卖】day07:新增套餐、套餐分页查询、 删除套餐
493 0
【瑞吉外卖】day07:新增套餐、套餐分页查询、 删除套餐(二)