InnoDB索引允许NULL对性能有影响吗(1)

简介: InnoDB索引允许NULL对性能有影响吗

阅读目录

0. 初始化测试表、数据1. 问题1:索引列允许为NULL,对性能影响有多少 结论1,存储大量的NULL值,除了计算更复杂之外,数据扫描的代价也会更高一些2. 问题2:辅助索引需要MVCC多版本读的时候,为什么需要依赖聚集索引 结论2,辅助索引中不存储DB_TRX_ID,需要依托聚集索引实现MVCC3. 问题3:为什么查找数据时,一定要读取叶子节点,只读非叶子节点不行吗 结论3,在索引树中查找数据时,最终一定是要读取叶子节点才行4. 问题4:索引列允许为NULL,会额外存储更多字节吗 结论4,定义列值允许为NULL并不会增加物理存储代价,但对索引效率的影响要另外考虑5. 几点总结6. 延伸阅读

本文开始之前,有几篇文章建议先复习一下

接下来,我们一起测试验证关于辅助索引的几个特点。

0. 初始化测试表、数据

测试表结构如下:

[root@yejr.run]> CREATE TABLE `t_sk` (
  `id` int(10) unsigned NOT NULL AUTO_INCREMENT,
  `c1` int(10) unsigned NOT NULL,
  `c2` int(10) unsigned NOT NULL,
  `c3` int(10) unsigned NOT NULL,
  `c4` int(10) unsigned NOT NULL,
  `c5` datetime NOT NULL,
  `c6` char(20) NOT NULL,
  `c7` varchar(30) NOT NULL,
  `c8` varchar(30) NOT NULL,
  `c9` varchar(30) NOT NULL,
  PRIMARY KEY (`id`),
  KEY `k1` (`c1`)
) ENGINE=InnoDB;

除了主键索引外,还有个 c1 列上的辅助索引。

mysql_random_data_load 灌入50万测试数据。

1. 问题1:索引列允许为NULL,对性能影响有多少



把辅助索引列 c1 修改为允许NULL,并且随机更新5万条数据,将 c1 列设置为NULL

[root@yejr.run]> alter table t_sk modify c1 int unsigned;


[root@yejr.run]> update t_sk set c1 = NULL order by rand() limit 50000;
Query OK, 50000 rows affected (2.83 sec)
Rows matched: 50000 Changed: 50000 Warnings: 0

#随机1/10为null
[root@yejr.run]> select count(*) from t_sk where c1 is null;
+----------+
| count(*) |
+----------+
| 50000 |
+----------+



好,现在观察辅助索引的索引数据页结构。

[root@yejr.run]# innblock test/t_sk.ibd scan 16
...
Datafile Total Size:100663296
===INDEX_ID:46 --聚集索引(主键索引)
level2 total block is (1) --根节点,层高2(共3层),共1个page
block_no: 3,level: 2|*|
level1 total block is (5) --中间节点,层高1,共5个page
block_no: 261,level: 1||block_no: 262,level: 1||block_no: 263,level: 1|*|
block_no: 264,level: 1||block_no: 265,level: 1||
level0 total block is (5020) --叶子节点,层高0,共5020个page
block_no: 5,level: 0||block_no: 6,level: 0||block_no: 7,level: 0|*|
...
===INDEX_ID:47 --辅助索引
level1 total block is (1) --根节点,层高1(共2层),共1个page
block_no: 4,level: 1|*|
level0 total block is (509) --叶子节点,层高0,共509个page
block_no: 18,level: 0||block_no: 19,level: 0||block_no: 31,level: 0|*|
...



观察辅助索引的根节点里的数据

[root@yejr.run]# innodb_space -s ibdata1 -T test/t_sk -p 4 page-dump
...
records:
{:format=>:compact,
:offset=>126, --第一条记录
:header=>
{:next=>428,
:type=>:node_pointer,
:heap_number=>2,
:n_owned=>0,
:min_rec=>true, --min_rec表示最小记录
:deleted=>false,
:nulls=>["c1"],
:lengths=>{},
:externs=>[],
:length=>6},
:next=>428,
:type=>:secondary,
:key=>[{:name=>"c1", :type=>"INT UNSIGNED", :value=>:NULL}], --对应c1列值为NULL
:row=>[{:name=>"id", :type=>"INT UNSIGNED", :value=>9}], --对应id=9
:sys=>[],
:child_page_number=>18, --指向叶子节点 pageno = 18
:length=>8}
...
{:format=>:compact,
:offset=>6246, --最后一条记录(next=>112,指向supremum)
:header=>
{:next=>112,
:type=>:node_pointer,
:heap_number=>346,
:n_owned=>0,
:min_rec=>false,
:deleted=>false,
:nulls=>[],
:lengths=>{},
:externs=>[],
:length=>6},
:next=>112,
:type=>:secondary,
:key=>[{:name=>"c1", :type=>"INT UNSIGNED", :value=>2142714688}], --对应c1=2142714688
:row=>[{:name=>"id", :type=>"INT UNSIGNED", :value=>73652}], --对应id=73652
:sys=>[],
:child_page_number=>2935, --指向叶子节点2935
:length=>12}



经过统计,根节点中c1列值为NULL的记录共有33条,其余476条是c1列值为非NULL,共509条记录。

叶子节点中,每个page大约可以存储1547条记录,共有5万条记录值为NULL,因此需要至少33个page来保存(ceiling(50000/1547) = 33)。

看下这个SQL的查询计划

[root@yejr.run]> desc select count(*) from t_sk where c1 is null\G
1. row **
id: 1
select_type: SIMPLE
table: t_sk
partitions: NULL
type: ref
possible_keys: k1
key: k1
key_len: 5
ref: const
rows: 99112
filtered: 100.00
Extra: Using where; Using index



从上面的输出中,我们能看到,当索引列设置允许为NULL时,是会对其纳入索引统计信息,并且值为NULL的记录,都是存储在索引树的最左边。

接下来,跑几个SQL查询。



SQL1,统计所有NULL值数量

[root@yejr.run]> select count(*) from t_sk where c1 is null;
+----------+
| count(*) |
+----------+
| 50000 |
+----------+



查看slow log

InnoDB_pages_distinct: 34
...
select count(*) from t_sk where c1 is null;

共需要扫描34个page,根节点(1)+叶子节点(33),正好34个page。

备注:需要用Percona版本才能在slow query log中有InnoDB_pages_distinct信息。



SQL2, 查询 c1 is null

[root@yejr.run]> select id,c1 from t_sk where c1 is null limit 1;
+------+------+
| id | c1 |
+------+------+
| 9607 | NULL |
+------+------+

查看slow log

InnoDB_pages_distinct: 12
...
select id,c1 from t_sk where c1 is null limit 1;




            </div>
相关文章
|
11月前
|
人工智能 搜索推荐 安全
《AI赋能鸿蒙Next视频内容分析与理解,开启智能新视界》
鸿蒙Next结合人工智能,特别是盘古大模型,为视频内容分析、理解与处理带来创新。系统可精准识别图像、语音和文本,实现智能分类、个性化推荐及内容审核,确保安全合规。同时,支持智能剪辑、创作及质量优化,提升用户体验。未来,AI将持续优化,推动视频领域创新发展。
391 3
|
机器学习/深度学习 人工智能 监控
YOLO的前世今生以及来龙去脉的背景介绍
YOLO的前世今生以及来龙去脉的背景介绍
|
域名解析 网络协议 安全
【域名解析DNS专栏】云服务中的DNS解析服务比较:阿里云、AWS、Azure大PK
【5月更文挑战第23天】此对比分析探讨了阿里云DNS、AWS Route 53和Azure DNS的服务特点。阿里云DNS以其智能解析和IPv6支持脱颖而出,适合中国地区用户;AWS Route 53凭借其强大的路由策略和与AWS生态的深度集成吸引高级用户;Azure DNS则以简洁管理和DNSSEC安全支持见长,与Azure平台集成良好。选择取决于具体需求,如功能、易用性、性能、安全性和成本。
846 1
【域名解析DNS专栏】云服务中的DNS解析服务比较:阿里云、AWS、Azure大PK
|
人工智能 自然语言处理 搜索推荐
如何利用AI技术改善学生的学习体验?
【5月更文挑战第19天】如何利用AI技术改善学生的学习体验?
593 1
|
机器学习/深度学习 人工智能 搜索推荐
探索未来:人工智能在日常生活中的应用与影响
本文将深度探讨人工智能(AI)如何在我们的日常生活中扮演着越来越重要的角色,从智能家居到个性化医疗、从教育辅助到职场变革。我们将通过具体案例和最新统计数据,分析AI技术带来的便利与挑战,并对其未来发展进行预测。 【7月更文挑战第25天】
2454 1
|
自然语言处理 搜索推荐 机器人
langchain 简介
langchain 简介
1030 1
|
机器学习/深度学习 人工智能 API
薅羊毛!阿里云免费GPU云主机畅玩AI绘画,免费领取阿里云v100显卡搭建AI绘画利器Stable Diffusion
薅羊毛!阿里云免费GPU云主机畅玩AI绘画,免费领取阿里云v100显卡搭建AI绘画利器Stable Diffusion
2043 4
薅羊毛!阿里云免费GPU云主机畅玩AI绘画,免费领取阿里云v100显卡搭建AI绘画利器Stable Diffusion
|
域名解析 安全
国际阿里云香港免备案轻量服务器优势!!!
阿里云是国内的知名品牌云服务商,有丰富的产品线和强大的技术支持,深受用户的青睐。小编将在本文中给大家说说阿里云香港服务器,一起来看看有何优势吧?
国际阿里云香港免备案轻量服务器优势!!!