能力说明:
可对MySQL数据库进行备份与恢复,可较为熟练的使用SQL语句进行单表多表查询等操作,可快速上手阿里云RDS MySQL数据库,可进行MySQL云数据库的创建、设置、数据迁移等工作。了解常见NOSQL数据库,如MongoDB、Redis、Memcached的概念、安装、配置等相关基础知识。
赵渝强老师,20年以上的行业从业经历,清华大学计算机软件工程专业毕业。曾任京东大数据学院院长,Oracle中国有限公司高级技术顾问;阿里云官方认证讲师;华为官方认证讲师。曾在BEA、甲骨文、摩托罗拉等世界500强公司担任高级软件架构师或咨询顾问。精通大数据、数据库、容器技术、中间件技术和Java。
随着大数据技术的兴起,NoSQL数据库(Not Only SQL)得到广泛应用。它不局限于二维表结构,允许数据冗余。常见的NoSQL数据库包括Redis、MongoDB和HBase。Redis是基于内存的高性能数据库,采用单线程模型和多路复用I/O,支持高效的数据结构。MongoDB使用BSON格式存储文档,查询语言强大,类似关系型数据库。HBase基于HDFS,适合数据分析,采用列式存储,支持灵活的列族设计。视频讲解及更多内容见下文。
PostgreSQL数据库的四个主要参数文件包括:`postgresql.conf`(主要配置文件)、`pg_hba.conf`(访问控制文件)、`pg_ident.conf`(用户映射文件)和`postgresql.auto.conf`(自动保存修改后的参数)。视频讲解和详细说明帮助理解各文件的作用。
本文介绍了PostgreSQL数据库的物理存储结构,重点解析了控制文件,包括其重要性及如何通过`pg_controldata`命令查看控制文件内容。控制文件记录了数据库运行的关键信息,如数据库状态、WAL位置等。
PostgreSQL的逻辑存储结构包括数据库集群、数据库、表空间、段、区、块等,以及表、索引、视图等数据库对象。每个对象有唯一的oid标识符,存储于系统目录表中。段、区、块是数据存储的基本单元,其中块是I/O操作的最小单位,默认大小为8KB。通过合理配置这些结构,可以优化数据库性能。
MySQL的慢查询日志用于记录执行时间超过设定阈值的SQL语句,帮助数据库管理员识别并优化性能问题。通过`mysqldumpslow`工具可查看日志。本文介绍了如何检查、启用及配置慢查询日志,并通过实例演示了慢查询的记录与分析过程。
MySQL的binlog日志记录了所有对数据库的更改操作(不包括SELECT和SHOW),主要用于主从复制和数据恢复。binlog有三种模式,可通过设置binlog_format参数选择。示例展示了如何启用binlog、设置格式、查看日志文件及记录的信息。
Redis 是内存数据库,提供数据持久化功能以防止服务器进程退出导致数据丢失。Redis 支持 RDB 和 AOF 两种持久化方式,其中 RDB 是默认的持久化方式。RDB 通过在指定时间间隔内将内存中的数据快照写入磁盘,确保数据的安全性和恢复能力。RDB 持久化机制包括创建子进程、将数据写入临时文件并替换旧文件等步骤。优点包括适合大规模数据恢复和低数据完整性要求的场景,但也有数据完整性和一致性较低及备份时占用内存的缺点。
本文介绍了MySQL数据库的基准测试及其重要性,并详细讲解了如何使用sysbench工具进行测试。内容涵盖sysbench的安装、基本使用方法,以及具体测试MySQL数据库的步骤,包括创建测试数据库、准备测试数据、执行测试和清理测试数据。通过这些步骤,可以帮助读者掌握如何有效地评估MySQL数据库的性能。
本文介绍了MySQL InnoDB存储引擎中的数据文件和重做日志文件。数据文件包括`.ibd`和`ibdata`文件,用于存放InnoDB数据和索引。重做日志文件(redo log)确保数据的可靠性和事务的持久性,其大小和路径可由相关参数配置。文章还提供了视频讲解和示例代码。
Hive的分区表与Oracle、MySQL类似,通过分区条件将数据分隔存储,提高查询效率。本文介绍了静态分区表和动态分区表的创建与使用方法,包括具体SQL语句和执行计划分析,附带视频讲解。静态分区表需显式指定分区条件,而动态分区表则根据插入数据自动创建分区。
Hive是基于HDFS的数据仓库,支持SQL查询。其数据模型包括内部表、外部表、分区表、临时表和桶表。本文介绍了如何创建和使用内部表和外部表,提供了详细的步骤和示例代码,并附有视频讲解。
在Kubernetes中,StatefulSets用于部署有状态应用程序,提供持久存储和唯一标识符。与Deployment不同,StatefulSets确保Pod的标识符在重新调度后保持不变,适用于需要稳定网络标识符和持久存储的场景。本文介绍了StatefulSets的创建、扩容与缩容、更新与回滚等操作,并提供了具体示例和视频讲解。
本文介绍了如何在4个节点(bigdata112、bigdata113、bigdata114和bigdata115)上部署HDFS高可用(HA)架构,并同时部署Yarn的HA。详细步骤包括环境变量设置、配置文件修改、ZooKeeper集群启动、JournalNode启动、HDFS格式化、ZooKeeper格式化以及启动Hadoop集群等。最后通过jps命令检查各节点上的后台进程,确保部署成功。
本文介绍了大数据平台的核心思想,包括Google的三篇重要论文:Google文件系统(GFS)、MapReduce分布式计算模型和BigTable大表。这些论文奠定了大数据生态圈的技术基础,进而发展出了Hadoop、Spark和Flink等生态系统。文章详细解释了GFS的架构、MapReduce的计算过程以及BigTable的思想和HBase的实现。
MongoDB WiredTiger存储引擎自3.2版本起成为默认选择,提供文档级别的并发控制、检查点、数据压缩和本地加密等功能。本文详细介绍了WiredTiger的并发控制机制、预写日志与检查点、内存使用、数据压缩及磁盘空间回收等特性。
Redis采用客户端-服务器模型和请求/响应协议,通常一个请求包括客户端发送查询请求并等待服务端响应。为了提高性能,Redis引入了管道PipeLine技术,可以一次性发送多条命令并一次性返回结果,减少客户端与服务器间的通信次数,从而降低往返延迟。示例代码展示了普通命令和管道命令在插入1万条数据时的性能差异,后者执行时间显著缩短。视频讲解提供了更详细的解释。
本文介绍了MySQL数据库中用户密码存储的变化,以及如何通过特殊方法重置root用户的密码。从MySQL 5.7版本开始,密码字段由“password”改为“authentication_string”。文章详细列出了重置密码的步骤,并提供了相关代码示例和视频教程。
本文介绍了Google的BigTable思想及其对HBase的影响。BigTable将所有数据存入一张表中以提高查询性能,而HBase作为其具体实现,采用列式存储,适合数据分析和处理。文章通过示例说明了HBase的表结构和数据插入方法,并提供了相关代码和图示。
本文介绍了HBase的体系架构,包括HMaster、RegionServer和ZooKeeper的主要功能。HMaster负责Region的分配和管理,RegionServer处理数据的读写操作,ZooKeeper维护集群状态并协调分布式系统的运行。文章还详细解释了Region、WAL预写日志、Block Cache读缓存和MemStore写缓存的作用。
MongoDB 是一个基于分布式文件存储的 NoSQL 数据库,提供了命令行客户端工具 mongoshell 和图形化工具 MongoDB Compass。mongoshell 可以进行数据查询和管理操作,而 MongoDB Compass 则支持可视化查询、聚合和数据分析。本文介绍了如何使用 mongoshell 连接 MongoDB 服务器、创建数据库和集合、插入数据以及配置命令提示符。同时,还展示了 MongoDB Compass 的主界面及其功能。
Hive是基于Hadoop的数据仓库平台,提供SQL-like的HQL语言进行数据分析,无需编写复杂的Java代码。Hive支持丰富的数据模型,可将SQL语句转换为MapReduce任务在Yarn上运行,底层依赖HDFS存储数据。Hive可通过CLI、JDBC和Web界面执行SQL查询。
本文介绍了在企业生产环境中无法直接访问外网时,如何使用Docker官方提供的二进制包进行Docker的离线安装。文章详细列出了从安装wget、下载Docker安装包、解压、复制命令到启动Docker服务的具体步骤,并提供了相关命令和示例图片。最后,还介绍了如何设置Docker为开机自启模式。
本文介绍了Flink如何实现流批一体的系统架构,包括数据集成、数仓架构和数据湖的流批一体方案。Flink通过统一的开发规范和SQL支持,解决了传统架构中的多套技术栈、数据链路冗余和数据口径不一致等问题,提高了开发效率和数据一致性。
本文介绍了MySQL数据库服务器启动后的三种连接方式:本地连接、远程连接和安全连接。详细步骤包括使用root用户登录、修改密码、创建新用户、授权及配置SSL等。并附有视频讲解,帮助读者更好地理解和操作。
本文介绍了Hadoop生态圈的主要组件及其关系,包括HDFS、HBase、MapReduce与Yarn、Hive与Pig、Sqoop与Flume、ZooKeeper和HUE。每个组件的功能和作用都进行了简要说明,帮助读者更好地理解Hadoop生态系统。文中还附有图表和视频讲解,以便更直观地展示这些组件的交互方式。
Yarn作为资源和任务调度平台,支持多个应用程序同时运行,如MapReduce、Spark和Flink等。Yarn的资源调度方式主要包括FIFO Scheduler(先来先服务)、Capacity Scheduler(容量调度)和Fair Scheduler(公平调度)。FIFO Scheduler按任务提交顺序调度;Capacity Scheduler通过队列管理资源,支持多租户共享;Fair Scheduler则根据任务权重动态分配资源,确保公平性。
本文介绍了MySQL的体系架构,包括Server层的7个主要组件(Connectors、Connection Pool、Management Service & Utilities、SQL Interface、Parser、Optimizer、Query Caches & Buffers)及其作用,以及存储引擎层的支持情况,重点介绍了InnoDB存储引擎。文中还提供了相关图片和视频讲解。
本文介绍了大数据平台的总体架构及各层的功能。大数据平台架构分为五层:数据源层、数据采集层、大数据平台层、数据仓库层和应用层。其中,大数据平台层为核心,负责数据的存储和计算,支持离线和实时数据处理。数据仓库层则基于大数据平台构建数据模型,应用层则利用这些模型实现具体的应用场景。文中还提供了Lambda和Kappa架构的视频讲解。