暂时未有相关云产品技术能力~
拉格朗日中值定理
this:它代表当前对象名(在程序中易产生二义性之处,应使用this来指明当前对象;如果函数的形参与类中的成员数据同名,这时需用this来指明成员变量名)
http: 是互联网上应用最为广泛的一种网络协议,是一个客户端和服务器端请求和应答的标准(TCP),用于从 WWW 服务器传输超文本到本地浏览器的超文本传输协议。
IO共有四种模型:同步阻塞、同步非阻塞、异步阻塞、异步非阻塞同步阻塞:系统内核做好读写数据的准备之前,用户线程一直等待。
这个参数的设计完全参考系统运行环境和硬件压力设定,没有固定的参考值,用户可以根据经验和系统产生任务的时间间隔合理设置一个值即可;
如果用户在浏览器中打开 Favicon. ico,就会调取失败,一般尽量保证该图标默认存在,文件尽可能小,并设置一个较长的缓存过期时间。另外,应及时清理缓存过期导致岀现请求失败的资源。
在使用 export时,用 import引入的相应模块名字一定要和定义的名字一样;而在使用 export default时,用 import引入的模块名字可以不一样。
在Web开发中,通常将项目的实现划分成许多模块。模块化开发其实就是将功能相关的代码封装在一起,方便维护和重用。另外,模块之间通过API进行通信
从底层实现上来看, service调用了 factory,返回其实例;factory调用了 provider,返回其$get中定义的内容。factory和 service的功能类似,只不过 factory是普通 function,可以返回任何数据。service是构造器,不需要返回;provider是加强版 factory,返回一个可配置的 factory。
React可以作为MVVM中第二个V,也就是View,但是并不是MVVM框架。MVVM一个最显著的特征:双向绑定。React没有这个,它是单向数据绑定的。React是一个单向数据流的库,状态驱动视图。react整体是函数式的思想,把组件设计成纯组件,状态和逻辑通过参数传入,所以在react中,是单向数据流,推崇结合immutable来实现数据不可变。
从逻辑角度来看,多线程的意义在于一个应用程序中,有多个执行部分可以同时执行。但操作系统并没有将多个线程看作多个独立的应用来实现进程的调度、管理和资源分配。这是进程和线程的主要区别。
vue.js 是采用数据劫持结合发布者-订阅者模式的方式,通过Object.defineProperty()来劫持各个属性的setter,getter,在数据变动时发布消息给订阅者,触发相应的监听回调。
在下次 DOM 更新循环结束之后执行延迟回调,在修改数据之后立即使用 nextTick 来获取更新后的 DOM。 nextTick主要使用了宏任务和微任务。 根据执行环境分别尝试采用Promise、MutationObserver、setImmediate,如果以上都不行则采用setTimeout定义了一个异步方法,多次调用nextTick会将方法存入队列中,通过这个异步方法清空当前队列。
从ECMAScript 2015,也就是ECMAScript 6,JavaScript程序将可以使用这种基于类的面向对象方法。在TypeScript里允许开发者现在就使用这些特性,并且编译后的JavaScript可以在所有主流浏览器和平台上运行,
事件代理( Event Delegation),又称为事件委托,是 JavaScript中绑定事件的常用技巧。顾名思义,“事件代理”就是把原本需要绑定的事件委托给父元素,让父元素负責事件监听。事件代理的原理是DOM元素的事件冒泡。使用事件代理的好处是可以提高性能。
JS运行的环境。一般为浏览器或者Node。 在浏览器环境中,有JS 引擎线程和渲染线程,且两个线程互斥。 Node环境中,只有JS 线程。 不同环境执行机制有差异,不同任务进入不同Event Queue队列。 当主程结束,先执行准备好微任务,然后再执行准备好的宏任务,一个轮询结束。
它是Web应用程序的传输协议,提供了双向的、按序到达的数据流。它是HTML5新増的协议, WebSocket的连接是持久的,它在客户端和服务器之间保持双工连接,服务器的更新可以及时推送到客户端,而不需要客户端以一定的时间间隔去轮询。
需要着重指出的是,这是一个渐进的过程。为达到更好的用户体验,渲染引擎会力求尽快将内容显示在屏幕上。它不必等到整个 HTML 文档解析完毕之后,就会开始构建呈现树和设置布局。在不断接收和处理来自网络的其余内容的同时,渲染引擎会将部分内容解析并显示出来。
P0\P1级别问题在规定时间内无法解决的,需要该问题的研发同学在问题comments内说明无法在规定时间内解决的合理的解释,并告知该问题具体的解决时间点同时邮件说明。
这是在数据分析中常见的概念,下钻可以理解成增加维的层次,从而可以由粗粒度到细粒度来观察数据,比如对产品销售情况分析时,可以沿着时间维从年到月到日更细粒度的观察数据。从年的维度可以下钻到月的维度、日的维度等。
数据仓库层是我们在做数据仓库时要核心设计的一层,在这里,从 ODS 层中获 得的数据按照主题建立各种数据模型。DW 层又细分为 DWD (Data Warehouse Detail) 层、DWM (Data WareHouse Middle) 层和 DWS (Data WareHouse Servce) 层。
条件表达式就是if表达式,if表达式可以根据给定的条件是否满足,根据条件的结果(真或假)决定执行对应的操作。
大数据知识面试题-Sqoop
Azkaban 是由Linkedin 公司推出的一个批量工作流任务调度器,主要用于在一个工作流 内以一个特定的顺序运行一组工作和流程,它的配置是通过简单的 key:value 对的方式, 通 过配置中的 Dependencies 来设置依赖关系。Azkaban 使用job 配置文件建立任务之间的依赖 关系, 并提供一个易于使用的 web 用户界面维护和跟踪你的工作流。
Capacity 参数决定Channel可容纳最大的event条数。transactionCapacity 参数决定每次Source往channel里面写的最大event条数和每次Sink从channel里面读的最大event条数。transactionCapacity需要大于Source和Sink的batchSize参数。
数据一致性问题:数据从主节点转到从节点必然会有一个延时的时间窗口,这个时间 窗口会导致主从节点之间的数据不一致。某一时刻,在主节点和从节点中 A 数据的值都为 X, 之后将主节点中 A 的值修改为 Y,那么在这个变更通知到从节点之前,应用读取从节点中的 A 数据的值并不为最新的 Y,由此便产生了数据不一致的问题。
Flink在做计算的过程中经常需要存储中间状态,来避免数据丢失和状态恢复。选择的状态存储策略不同,会影响状态持久化如何和 checkpoint 交互。Flink 提供了三种状态存储方式:MemoryStateBackend、FsStateBackend、RocksDBStateBackend。
在cluster模式下,Driver运行在YARN集群的某个节点上,使用的是没有经过配置的默认设置,PermGen永久代大小为82MB。运行报出OOM错误。
如果 Rowkey 是按时间戳的方式递增,不要将时间放在二进制码的前面,建议将 Rowkey 的高位作为散列字段,由程序循环生成,低位放时间字段,这样将提高数据均衡分布在每个 Regionserver 实现负载均衡的几率。如果没有散列字段,首字段直接是时间信息将产生所有 新数据都在一个 RegionServer 上堆积的热点现象,这样在做数据检索的时候负载将会集中 在个别 RegionServer,降低查询效率。
分区建表分为2种,一种是单分区,也就是说在表文件夹目录下只有一级文件夹目录。另外一种是多分区,表文件夹下出现多文件夹嵌套模式。
用户只要在其之前进行二次开发就行,对于底层的 RPC 通讯等都是透明的。不过这个对于用户来说的话需要学习特定领域语言这个特性,还是有一定成本的。
Application Submission Context发出响应,其中包含有:ApplicationID,用户名,队列以及其他启动ApplicationMaster的信息,Container Launch Context(CLC)也会发给ResourceManager,CLC提供了资源的需求,作业文件,安全令牌以及在节点启动ApplicationMaster所需要的其他信息。
Block与Splite区别:Block是HDFS物理上把数据分成一块一块;数据切片只是在逻辑上对输入进行分片,并不会在磁盘上将其切分成片进行存储。如下图所示,一个512M的文件在HDFS上存储时,默认一个block为128M,那么该文件需要4个block进行物理存储;若对该文件进行切片,假设以100M大小进行切片,该文件在逻辑上需要切成6片,则需要6个MapTask任务进行处理。
表现最稳定的排序算法之一,因为无论什么数据进去都是O(n2)的时间复杂度,所以用到它的时候,数据规模越小越好。唯一的好处可能就是不占用额外的内存空间了吧。理论上讲,选择排序可能也是平时排序一般人想到的最多的排序方法了吧。
使用list类型保存数据信息,rpush生产消息,lpop消费消息,当lpop没有消息时,可以sleep一段时间,然后再检查有没有信息,如果不想sleep的话,可以使用blpop, 在没有信息的时候,会一直阻塞,直到信息的到来。redis可以通过pub/sub主题订阅模式实现一个生产者,多个消费者,当然也存在一定的缺点,当消费者下线时,生产的消息会丢失。
如果要查询的字段都建立过索引,那么引擎会直接在索引表中查询而不会访问原始数据(否则只要有一个字段没有建立索引就会做全表扫描),这叫索引覆盖。因此我们需要尽可能的在select后只写必要的查询字段,以增加索引覆盖的几率。
如果 firstPage method() 中的异常继续发生,则 Hystrix 电路将中断,并且员工使用者将一起跳过 firtsPage 方法,并直接调用回退方法。 断路器的目的是给第一页方法或第一页方法可能调用的其他方法留出时间,并导致异常恢复。可能发生的情况是,在负载较小的情况下,导致异常的问题有更好的恢复机会 。
Spring Boot 的 jar 无法被其他项目依赖,主要还是他和普通 jar 的结构不同。普通的 jar 包,解压后直接就是包名,包里就是我们的代码,而 Spring Boot 打包成的可执行 jar 解压后,在 \BOOT-INF\classes 目录下才是我们的代码,因此无法被直接引用。如果非要引用,可以在 pom.xml 文件中增加配置,将 Spring Boot 项目打包成两个 jar ,一个可执行,一个可引用。
zookeeper用来注册服务和进行负载均衡,哪一个服务由哪一个机器来提供必需让调用者知道,简单来说就是ip地址和服务名称的对应关系。当然也可以通过硬编码的方式把这种对应关系在调用方业务代码中实现,但是如果提供服务的机器挂掉调用者无法知晓,如果不更改代码会继续请求挂掉的机器提供服务。zookeeper通过心跳机制可以检测挂掉的机器并将挂掉机器的ip和服务对应关系从列表中删除。至于支持高并发,简单来说就是横向扩展,在不更改代码的情况通过添加机器来提高运算能力。通过添加新的机器向zookeeper注册服务,服务的提供者多了能服务的客户就多了。
mq消息队列块满了:如果消息积压在 mq 里,你很长时间都没有处理掉,此时导致 mq 都快写满了,咋办?这个还有别的办法吗?没有,谁让你第一个方案执行的太慢了,你临时写程序,接入数据来消费,消费一个丢弃一个,都不要了,快速消费掉所有的消息。然后走第二个方案,到了晚上再补数据吧。
Mybatis仅可以编写针对ParameterHandler、ResultSetHandler、StatementHandler、Executor这4种接口的插件,Mybatis使用JDK的动态代理,为需要拦截的接口生成代理对象以实现接口方法拦截功能,每当执行这4种接口对象的方法时,就会进入拦截方法,具体就是InvocationHandler的invoke()方法,当然,只会拦截那些你指定需要拦截的方法。
注解本质是一个继承了Annotation的特殊接口,其具体实现类是Java运行时生成的动态代理类。我们通过反射获取注解时,返回的是Java运行时生成的动态代理对象。通过代理对象调用自定义注解的方法,会最终调用AnnotationInvocationHandler的invoke方法。该方法会从memberValues这个Map中索引出对应的值。而memberValues的来源是Java常量池。
Spring事务的本质其实就是数据库对事务的支持,没有数据库的事务支持,spring是无法提供事务功能的。真正的数据库层的事务提交和回滚是通过binlog或者redo log实现的。
Exchanger是一个用于线程间协作的工具类,用于两个线程间交换数据。它提供了一个交换的同步点,在这个同步点两个线程能够交换数据。交换数据是通过exchange方法来实现的,如果一个线程先执行exchange方法,那么它会同步等待另一个线程也执行exchange方法,这个时候两个线程就都达到了同步点,两个线程就可以交换数据。
虚拟机把描述类的数据从Class文件加载到内存,并对数据进行校验,解析和初始化,最终形成可以被虚拟机直接使用的java类型。
当系统检查到锁是重量级锁之后,会把等待想要获得锁的线程进行阻塞,被阻塞的线程不会消耗cpu。但是阻塞或者唤醒一个线程时,都需要操作系统来帮忙,这就需要从用户态转换到内核态,而转换状态是需要消耗很多时间的,有可能比用户执行代码的时间还要长。
try – 用于监听。将要被监听的代码(可能抛出异常的代码)放在try语句块之内,当try语句块内发生异常时,异常就被抛出。
TreeSet 要求存放的对象所属的类必须实现 Comparable 接口,该接口提供了比较元素的 compareTo()方法,当插入元素时会回调该方法比较元素的大小。TreeMap 要求存放的键值对映射的键必须实现 Comparable 接口从而根据键对元素进 行排 序。
对于Kafka而言,pull模式更合适,它可简化broker的设计,consumer可自主控制消费消息的速率,同时consumer可以自己控制消费方式——即可批量消费也可逐条消费,同时还能选择不同的提交方式从而实现不同的传输语义。
ZooKeeper是一个分布式的,开放源码的分布式应用程序协调服务,是Google的Chubby一个开源的实现,是Hadoop和Hbase的重要组件。它是一个为分布式应用提供一致性服务的软件,提供的功能包括:配置维护、域名服务、分布式同步、组服务等。
从oracle官方网站上下载1.8版本中的最新版的JDK。下载完成后,把文件通过WinSCP或者XFTP上传到服务器上。接着进行解压和配置环境变量。