Dataphin智能数据建设与治理官方出口。
雅戈尔通过 Dataphin 进行数据建设与治理,在业务应用过程中为决策提供依据,提升效率。
瓴羊Dataphin连续俩年获得DAMA年度优秀数据治理产品奖,本次与DAMA联合发布“DAMA x 瓴羊 数据管理技能认证”,助力提升全民数据素养。
DataAgent如何助理业务和研发成为业务参谋?如何快速低成本的创建行业数据分类标准?如何管控数据源表的访问权限?如何满足企业安全审计需求?
在伊利对外展现的不断进化的产品底层,这家国民乳制品企业已经建立起了精密、庞大的以数据中台为底层的数智化模型,真正做到了“以数据为业务导向”。 如今,这不仅是伊利的故事,更是中国一众大型供应链企业的新故事。
瓴羊智能数据建设与治理产品Datapin全面升级,可演进扩展的数据架构体系为企业数据治理预留发展空间,推出敏捷版用以解决企业数据量不大但需构建数据的场景问题,基于大模型打造的DataAgent更是为企业用好数据资产提供了便利。
数据治理的新风向来了:从普惠、低成本的SaaS化敏捷版,到平滑升级可持续演进的数据体系架构,再到智能化DataAgent的加入~ 瓴羊Dataphin,让企业数据治理有更多选择,也更便捷!
审计日志作为企业监管平台的重要依据,同时也是“等保三级”认证的必要考察项之一。Dataphin V4.3版本支持设置平台日志的存储数据源,帮助用户快速获取审计日志,同时介绍了不同部署模式的Dataphin如何查看审计日志的方法。
Dataphin 是阿里巴巴旗下的一个智能数据建设与治理平台,旨在帮助企业构建高效、可靠、安全的数据资产。在V4.2版本中,Dataphin敏捷版上线助力企业打造轻量版数据中台,打通数据资产管理和消费,陪伴企业迈入数据高价值应用新阶段。
当前大数据处理工业界非常重要的一个大趋势是一体化,尤其是湖仓一体架构。与过去分散的数据仓库和数据湖不同,湖仓一体架构通过将数据存储和处理融为一体,不仅提升了数据访问速度和处理效率,还简化了数据管理流程,降低了资源成本。企业可以更轻松地实现数据治理和分析,从而快速决策。paimon是国内开源的,也是最年轻的成员。 本文主要演示如何在 Dataphin 产品中构建 Flink+Paimon 的流式湖仓方案。
在数据驱动的时代,企业数据资产的有效管理与高效利用成为了企业数字化转型的关键。面对复杂多变的业务场景和日益增长的数据需求,如何确保数据资产的安全访问、便捷查找与灵活消费,成为众多数据平台负责人的共同挑战。Dataphin,作为一站式大数据智能建设与管理平台,在V4.2版本中全新推出“资产消费”新功能,旨在通过统一权限管理并打通 BI 平台,为企业数据资产管理与消费带来便捷体验。
Dataphin作为领先的数据开发与治理一体化平台,全新推出元数据采集与管理功能,可支持多种采集源,并能对采集到的元数据对象进行统一管理和运营,同时可对接丰富的下游应用,为企业在数据管理各个环节提供强有力的支持。
新一代证券交易监察系统利用大数据和实时计算技术强化风险控制、交易数据处理、识别异常交易等能力。通过Dataphin与Flink结合,构建期货交易监察实时数据应用;借助QuickBI用于打造实时看板和预警体系,实现期货交易监察的实时可视化分析和自动化预警。
在企业用户使用Dataphin的实时研发模块时,有两个基本问题是必须考虑的: 1. 短期上线一个实时业务,需要准备多少资源?企业在未来一年中,需要提前准备多少服务器/云资源? 2. 上线实时任务时,怎么配置需要的资源? 本文对这两个问题做简单介绍,期望企业用户能够快速理解资源预估原理和资源配置方法。
Hologres支持通过创建外部表来加速MaxCompute数据的查询,此方法用户直接在Hologres环境中访问和分析存储在MaxCompute中的数据,从而提高查询效率并简化数据处理流程。本文将介绍在 Dataphin 产品中如何实现这一操作。
为了解决视图授权和维护繁琐的问题,Dataphin V4.1 推出行级权限功能,支持灵活控制不同账号对计算引擎表的可见范围,帮助统一构建数据基座的企业,实现各子公司、大区、业务部之间的数据隔离。
Dataphin实时集成的读取和写入原理是什么?Dataphin实时集成和实时研发的区别是什么?Dataphin实时集成有哪些优势?本文一次讲清
Dataphin 中的 Python 计算任务不随意增加内置 module 是为了避免安装包过大和升级时间延长。用户可通过执行 "pip list" 或 "pip3 list" 查看内置 module 列表。 Dataphin 的 Python 环境在镜像中固定,无法用户直接修改,但 v3.14 版本起支持在线安装或上传安装三方包,预安装后在任务中显式引入。对于依赖操作系统库的 module,用户需上传包含相应程序的自定义安装包进行预安装。此外,此功能也可扩展用于管理 shell 任务所需的系统程序。
台州银行数据治理项目携手瓴羊Dataphin,荣获中国信息通信研究院评为“2023年铸基计划高质量数字化转型典型优秀案例”、数字化研究机构沙丘社区选为“2024中国数据资产管理最佳实践案例”双重认可。
Dataphin 是阿里巴巴旗下的一个智能数据建设与治理平台,旨在帮助企业构建高效、可靠、安全的数据资产。在V4.1版本升级中,Dataphin 引入了Lindorm等多项新功能,并开启公共云半托管模式,优化代码搜索,为用户提供更加高效、灵活、安全的数据管理和运营环境,提升用户体验,促进企业数据资产的建设和价值挖掘。
在证券行业,数据处理和分析是核心任务之一,对于提供决策支持和市场分析至关重要。由于股市的特殊性,不同的市场(如沪深、港股等)拥有各自的交易日历,这意味着在非交易日,如周末或特定节假日,市场是关闭的,不产生任何交易数据。因此,证券行业的数据处理任务需紧密跟随这些交易日历的规律进行调度,以确保数据的准确性和实时性。
标准管理员小S面临数据标准编码管理的挑战:编码格式不统一、编码值不可读活相关性差,手动管理耗时易出错。Dataphin新推出“标准编码规则”功能,可以实现一次配置批量生成编码,并通过自增序列、固定字符串和所属标准集编码的组合,保证编码相关性和灵活性,同时提供了编码规则变更后的批量订正功能,大大简化管理工作。小S对此表示高度满意。
在Dataphin中, 经常遇到需要连接外部服务来实现一些特定的功能, 如连接外部FTP检测FTP服务的连通性. 实现此类功能, 一般是使用shell或者Python代码任务. 由于外部服务大多都有访问鉴权, 就需要在shell/Python代码中向服务端发送账号密码(密钥),如何在shell或者Python任务中安全的使用账号密码?
本次V4.0版本升级,Dataphin支持自定义全局角色、自定义逻辑表命名规范、Flink on K8s的部署模式,提升企业级适配能力,灵活匹配企业特色;将集成任务快速从组件模式切换为脚本模式、支持外部触发类型节点等,提升研发平台易用性,助力高效开发便捷运维。
一个销售额结算的周期任务的调度周期是月调度---每月1号进行调度,但是有一天调整了计算口径后希望重新计算过去几个月的销售额,此时补数据任务的业务日期应该如何选择?
在创建普通维度逻辑表和事实逻辑表关联维度时,如何配置维表版本策略?
Dataphin内置pyhive使用说明
本文档提供了Dataphin平台Oracle CDC实时集成相关问题排查指南,覆盖了权限等常见问题,旨在帮助快速定位和解决Oracle数据库变更数据捕获(CDC)集成过程中所可能遇到的技术难题,确保数据的实时、准确同步。
Dataphin v4.0引入了新的触发式节点,用于解决多数据平台间的调度问题。当上游系统(如Unix的crontab)完成数据采集后,可通过触发式节点通知Dataphin开始拉取数据,避免传统轮询方式的效率低和资源占用。触发式节点需满足Dataphin OpenAPI开通和网络连通条件,并通过SDK进行外部触发。示例展示了如何创建和使用触发式节点,以及使用Java SDK模拟触发请求。
Dataphin V4.0版本升级治理工作台,支持手动录入数据质量问题,新增对“标签”对象的问题管理,并且可对问题进行分类。问题清单和整改流程也进行了优化,手动录入的问题和自动识别的问题可统一整改追踪,并提供操作记录,以增强数据质量管理的响应速度和效率。
随着企业数据治理开展到一定阶段,对质量监控规则的精细化管理诉求进一步提升,需要为质量规则配置更多属性信息以支持后续的统计的分析。Dataphin V4.0版本新增了自定义质量规则属性的能力,通过简单的配置即可实现灵活、高效的规则管理,满足多样化诉求。
在V4.0版本中,Dataphin推出了智能推荐映射关系功能,用户可以基于内置特征或创建自定义特征,对数据内容进行表示,并将其与数据标准关联,进而智能映射映射关系,尤其在字段分布广泛和命名多变的情况下,可以提高映射的准确性和效率,加速了数据标准实施。
Dataphin v3.13引入了跨节点参数功能,允许任务间传递消息。输出节点(如SQL、Shell、Python任务)能输出参数,输入节点可以接收并使用这些参数。此功能解决了通过公共存储中转消息的复杂性和低效问题。应用场景包括:金融企业的币种转换,其中汇率任务(输出节点)提供汇率,转换任务(输入节点)使用该汇率;以及产品目录更新检查,通过跨节点参数控制是否需要执行数据导入任务。用户可以通过任务编辑器设置和传递跨节点参数,并在运维中进行补数据操作。
关联逻辑表主题式查询
第一时间了解数据治理领域的最新动态
DataphinV3.14支持传统数据库调用,带来全新高效研发体验,及时全面的数据保护、自定义监控和审批让数据治理更灵活自由。
通过Dataphin公共云多租户的方式,可以实现零部署成本、零运维成本构建智能大数据研发与治理平台。Dataphin部署在阿里云上,已有的数据源部署在本地机房,因此数据上云第一步,首先要打通网络。本文将介绍本地IDC机房的数据源网络打通的不同方案。
当前大数据时代背景下,企业对数据的处理、分析和实时应用的需求日益增强。阿里云MaxCompute广泛应用于海量数据的ETL、数据分析等场景,但在将处理后的数据进一步同步至在线数据库系统,如ADB MySQL 3.0(阿里云自研的新一代云原生关系型数据库MySQL版)以支持实时查询、业务决策等需求时,可能会遇到数据迁移速度缓慢的问题。 DataphinV3.14版本支持外表导入SQL的带参调度,实现通过MaxCompute外表的方式将数据批量同步至ADB MySQL 3.0中,显著提升数据迁移的速度和效率。
在Dataphin中, 经常遇到需要连接外部服务来实现一些特定的功能, 如连接外部FTP检测FTP服务的连通性. 实现此类功能, 一般是使用shell或者Python代码任务. 由于外部服务大多都有访问鉴权, 就需要在shell/Python代码中向服务端发送账号密码(密钥),如何在shell或者Python任务中安全的使用账号密码?
Dataphin数据服务API提供便捷的API开发及运维、应用调用权限管理等功能,为数据业务化提供了坚实的支撑。在应用调用API的时候,Dataphin可支持通过AcessKey方式的调用鉴权。而在企业内部网络中,也可以使用IP白名单方式简化调用。本文将为您介绍如何开启IP白名单的调用鉴权。
Dataphin v4.0提升了即席查询体验,新增支持多条SQL语句同时执行并查看独立日志,允许用户移动或隐藏列,以及全屏查看结果。此外,为增强数据安全,引入了禁止数据复制的功能。新版本还优化了细节,如单行详细信息查看和更灵活的列管理,旨在提高数据分析效率并保障数据安全。
Dataphin V3.14 重磅升级,平台支持企业级适配,适配企业特色;研发体验易用性提升,数据研发更高效、任务运维更便捷;数据治理能力更完备,支持多对象批量操作,规则级告警配置、分级分类自动继承继承!
实时研发一直以来的都是通过local-debug的方式来调试开发中的Flink SQL任务,该方式有如下不足: 1. 支持的采样数据有限,且非是流式数据的调试。 2. 手动上传构造数据的方式较为繁琐,局限性较大。 为便于Flink SQL任务的调试,DataphinV3.14版本支持Flink SQL任务基于Session集群调试,期望做到像离线即席查询般方便地获取实时任务的输出结果,方便用户对线上的真实数据进行代码逻辑上的调试。
研发任务列表
hello,大家好: 为了更好地引导广大用户深入探索和高效利用Dataphin全方位的数据智能能力,我们特别推出“Dataphin功能小Tips”系列,旨在通过生动直观的场景描述与对应的功能应用方案,以简洁明快的语言呈现,力求让每一位用户都能轻松解锁Dataphin中的每一个实用功能点。 这一系列内容专为提升您的使用体验而设计,期待能为大家解决实际问题、优化数据管理工作带来切实的帮助,在此,我们也诚挚邀请所有用户积极参与互动,随时分享您宝贵的使用心得与建议。您的反馈将是我们不断迭代优化的重要动力!
Dataphin 在 V3.14 版本中对标准审批设置功能进行了全面升级,支持按照标准集粒度对不同数据标准的审批流程进行配置:上线、下线审批可独立配置,支持免审批;此外,Dataphin 支持设置不同模块的审批流程使用的审批系统(内置或第三方审批系统),从而将标准管理流程和且 OA 流程进行更好的结合,助力提升组织流程的管理效率,推动业务发展。
在一些场景中,常常需要支持通过筛选指定条件快速定位目标实时任务并进行批量操作,如:为了保证大促期间实时指标及时准确产出,在大促前需要找出一批相关的实时任务进行资源配置的调整,更高效利用可用计算资源,实现资源的动态分配和优化;当系统需要紧急响应某些情况(如故障恢复、资源冲突等)时,批量操作使得快速下线、替换或重启一组任务。 Dataphin V3.13版本中,新增实时计算任务列表,支持快速筛选任务和批量操作任务的功能,可以帮助更加高效地处理大量计算任务。
本次发布的V3.13 版本中,Dataphin 不仅提升了易用性,支持了计算任务批量操作(离线集成&实时计算任务)、运维列表查看及批量操作(实例排序、手动任务批量运行、逻辑表任务修改负责人)等功能;也新增了多个特色功能,如:任务传参及灵活调度(跨节点参数)、治理经验沉淀(质量知识库)、资产治理相关对象的跨租户发布(数据标准、安全)、跨集群资源调度、分析平台手工表等,以满足灵活、多样性的业务诉求。
Dataphin的标签平台提供了 丰富强大的标签加工能力,支持多种类型标签开发,包括离线、实时等标签可视化加工。基于离线视图、实时视图、行为关系,可通过配置化的方式构建属性类、统计类标签、偏好类标签,以及与已有的标签创建衍生组合标签。通过构建及管理标签,形成良好的标签资产,可供上层的应用及业务系统使用。本文将介绍如何通过Dataphin OpenAPI圈选群组以及群组分页查询服务,让应用系统集成标签平台的标签及群组加工能力,进行群组的圈选、分析及投放。
实时数据大屏是实时计算的重要应用场景之一,广泛应用在电商业务中,用于实时监控和分析电商平台的运营情况。通过大屏展示实时的销售额、订单量、用户活跃度、商品热度等数据指标,帮助业务人员随时了解业务的实时状态,快速发现问题和机会。同时,通过数据可视化和趋势分析,大屏也提供了决策支持和优化运营的功能,帮助业务人员做出及时的决策和调整策略,优化电商业务的运营效果。 下面以电商业务为背景,介绍如何构建经典实时数仓,实现实时数据从业务库到ODS层、DWD层、DWS层全链路流转,基于Dataphin和Quick BI实现实时数据大屏。
Datatphin V3.11版本全新上线补数据任务功能,支持将单次补数据保存为补数据任务,保存补数据节点范围及运行规则;支持补数据任务定时调度,自动定期回刷历史数据;支持手动运行补数据任务。满足企业复杂多样的回刷历史数据的需求,减少人工操作成本。