Dataphin智能数据建设与治理官方出口。
针对MaxCompute经典网络域名下线,Dataphin应对策略的公告
本文通过一个利用百炼大模型平台和Dataphin数据服务API构建一个客户360智能应用的案例,介绍如何使用Dataphin数据服务API在百炼平台创建一个自定义插件,用于智能应用的开发,提升企业智能化应用水平。
当BI遇见AI,洞见变得触手可及 —— 瓴羊「数据荟」数据Meet Up城市行·杭州站启幕,欢迎参与。
雅戈尔通过 Dataphin 进行数据建设与治理,在业务应用过程中为决策提供依据,提升效率。
瓴羊Dataphin连续俩年获得DAMA年度优秀数据治理产品奖,本次与DAMA联合发布“DAMA x 瓴羊 数据管理技能认证”,助力提升全民数据素养。
DataAgent如何助理业务和研发成为业务参谋?如何快速低成本的创建行业数据分类标准?如何管控数据源表的访问权限?如何满足企业安全审计需求?
在伊利对外展现的不断进化的产品底层,这家国民乳制品企业已经建立起了精密、庞大的以数据中台为底层的数智化模型,真正做到了“以数据为业务导向”。 如今,这不仅是伊利的故事,更是中国一众大型供应链企业的新故事。
瓴羊智能数据建设与治理产品Datapin全面升级,可演进扩展的数据架构体系为企业数据治理预留发展空间,推出敏捷版用以解决企业数据量不大但需构建数据的场景问题,基于大模型打造的DataAgent更是为企业用好数据资产提供了便利。
数据治理的新风向来了:从普惠、低成本的SaaS化敏捷版,到平滑升级可持续演进的数据体系架构,再到智能化DataAgent的加入~ 瓴羊Dataphin,让企业数据治理有更多选择,也更便捷!
本文介绍了一家零售企业如何利用SelectDB进行BI分析及数据服务API的查询。通过Dataphin的数据集成、SQL研发等功能,将CRM、ERP等系统数据汇聚加工,并推送至SelectDB构建销售数据集市层,以支持报表分析及API查询。SelectDB具备实时、统一、弹性及开放特性,适用于多种实时分析场景。文章详细描述了在Dataphin中集成SelectDB的整体方案、数据源配置、数据集成、数据开发及数据服务流程。
为满足数据消费中单表消费的场景,Dataphin在V4.3 版本支持对MySQL和Oracle类型的数据源表进行权限管控。
审计日志作为企业监管平台的重要依据,同时也是“等保三级”认证的必要考察项之一。Dataphin V4.3版本支持设置平台日志的存储数据源,帮助用户快速获取审计日志,同时介绍了不同部署模式的Dataphin如何查看审计日志的方法。
Dataphin推出的资产自动上架功能,旨在解决资产运营人员手动维护和上架大量资产的繁琐工作。支持不同类型的规则配置,并提供灵活的执行配置和排序功能,从而高效管理不同特性的资产,也能有效避免冲突,助力提升工作效率,为资产运营提供了更多可能性。
如何通过kafka构建实时标签
Dataphin 是阿里巴巴旗下的一个智能数据建设与治理平台,旨在帮助企业构建高效、可靠、安全的数据资产。在V4.2版本中,Dataphin敏捷版上线助力企业打造轻量版数据中台,打通数据资产管理和消费,陪伴企业迈入数据高价值应用新阶段。
当前大数据处理工业界非常重要的一个大趋势是一体化,尤其是湖仓一体架构。与过去分散的数据仓库和数据湖不同,湖仓一体架构通过将数据存储和处理融为一体,不仅提升了数据访问速度和处理效率,还简化了数据管理流程,降低了资源成本。企业可以更轻松地实现数据治理和分析,从而快速决策。paimon是国内开源的,也是最年轻的成员。 本文主要演示如何在 Dataphin 产品中构建 Flink+Paimon 的流式湖仓方案。
在数据驱动的时代,企业数据资产的有效管理与高效利用成为了企业数字化转型的关键。面对复杂多变的业务场景和日益增长的数据需求,如何确保数据资产的安全访问、便捷查找与灵活消费,成为众多数据平台负责人的共同挑战。Dataphin,作为一站式大数据智能建设与管理平台,在V4.2版本中全新推出“资产消费”新功能,旨在通过统一权限管理并打通 BI 平台,为企业数据资产管理与消费带来便捷体验。
Dataphin作为领先的数据开发与治理一体化平台,全新推出元数据采集与管理功能,可支持多种采集源,并能对采集到的元数据对象进行统一管理和运营,同时可对接丰富的下游应用,为企业在数据管理各个环节提供强有力的支持。
新一代证券交易监察系统利用大数据和实时计算技术强化风险控制、交易数据处理、识别异常交易等能力。通过Dataphin与Flink结合,构建期货交易监察实时数据应用;借助QuickBI用于打造实时看板和预警体系,实现期货交易监察的实时可视化分析和自动化预警。
在企业用户使用Dataphin的实时研发模块时,有两个基本问题是必须考虑的: 1. 短期上线一个实时业务,需要准备多少资源?企业在未来一年中,需要提前准备多少服务器/云资源? 2. 上线实时任务时,怎么配置需要的资源? 本文对这两个问题做简单介绍,期望企业用户能够快速理解资源预估原理和资源配置方法。
Hologres支持通过创建外部表来加速MaxCompute数据的查询,此方法用户直接在Hologres环境中访问和分析存储在MaxCompute中的数据,从而提高查询效率并简化数据处理流程。本文将介绍在 Dataphin 产品中如何实现这一操作。
本文主要解析了Dataphin产品中重跑与强制重跑的区别及运行原理,推荐用户根据不同的场景选择适合的操作。
为了解决视图授权和维护繁琐的问题,Dataphin V4.1 推出行级权限功能,支持灵活控制不同账号对计算引擎表的可见范围,帮助统一构建数据基座的企业,实现各子公司、大区、业务部之间的数据隔离。
Dataphin实时集成的读取和写入原理是什么?Dataphin实时集成和实时研发的区别是什么?Dataphin实时集成有哪些优势?本文一次讲清
Dataphin 中的 Python 计算任务不随意增加内置 module 是为了避免安装包过大和升级时间延长。用户可通过执行 "pip list" 或 "pip3 list" 查看内置 module 列表。 Dataphin 的 Python 环境在镜像中固定,无法用户直接修改,但 v3.14 版本起支持在线安装或上传安装三方包,预安装后在任务中显式引入。对于依赖操作系统库的 module,用户需上传包含相应程序的自定义安装包进行预安装。此外,此功能也可扩展用于管理 shell 任务所需的系统程序。
台州银行数据治理项目携手瓴羊Dataphin,荣获中国信息通信研究院评为“2023年铸基计划高质量数字化转型典型优秀案例”、数字化研究机构沙丘社区选为“2024中国数据资产管理最佳实践案例”双重认可。
Dataphin 是阿里巴巴旗下的一个智能数据建设与治理平台,旨在帮助企业构建高效、可靠、安全的数据资产。在V4.1版本升级中,Dataphin 引入了Lindorm等多项新功能,并开启公共云半托管模式,优化代码搜索,为用户提供更加高效、灵活、安全的数据管理和运营环境,提升用户体验,促进企业数据资产的建设和价值挖掘。
在证券行业,数据处理和分析是核心任务之一,对于提供决策支持和市场分析至关重要。由于股市的特殊性,不同的市场(如沪深、港股等)拥有各自的交易日历,这意味着在非交易日,如周末或特定节假日,市场是关闭的,不产生任何交易数据。因此,证券行业的数据处理任务需紧密跟随这些交易日历的规律进行调度,以确保数据的准确性和实时性。
标准管理员小S面临数据标准编码管理的挑战:编码格式不统一、编码值不可读活相关性差,手动管理耗时易出错。Dataphin新推出“标准编码规则”功能,可以实现一次配置批量生成编码,并通过自增序列、固定字符串和所属标准集编码的组合,保证编码相关性和灵活性,同时提供了编码规则变更后的批量订正功能,大大简化管理工作。小S对此表示高度满意。
在Dataphin中, 经常遇到需要连接外部服务来实现一些特定的功能, 如连接外部FTP检测FTP服务的连通性. 实现此类功能, 一般是使用shell或者Python代码任务. 由于外部服务大多都有访问鉴权, 就需要在shell/Python代码中向服务端发送账号密码(密钥),如何在shell或者Python任务中安全的使用账号密码?
本次V4.0版本升级,Dataphin支持自定义全局角色、自定义逻辑表命名规范、Flink on K8s的部署模式,提升企业级适配能力,灵活匹配企业特色;将集成任务快速从组件模式切换为脚本模式、支持外部触发类型节点等,提升研发平台易用性,助力高效开发便捷运维。
一个销售额结算的周期任务的调度周期是月调度---每月1号进行调度,但是有一天调整了计算口径后希望重新计算过去几个月的销售额,此时补数据任务的业务日期应该如何选择?
在创建普通维度逻辑表和事实逻辑表关联维度时,如何配置维表版本策略?
Dataphin内置pyhive使用说明
本文档提供了Dataphin平台Oracle CDC实时集成相关问题排查指南,覆盖了权限等常见问题,旨在帮助快速定位和解决Oracle数据库变更数据捕获(CDC)集成过程中所可能遇到的技术难题,确保数据的实时、准确同步。
Dataphin v4.0引入了新的触发式节点,用于解决多数据平台间的调度问题。当上游系统(如Unix的crontab)完成数据采集后,可通过触发式节点通知Dataphin开始拉取数据,避免传统轮询方式的效率低和资源占用。触发式节点需满足Dataphin OpenAPI开通和网络连通条件,并通过SDK进行外部触发。示例展示了如何创建和使用触发式节点,以及使用Java SDK模拟触发请求。
Dataphin V4.0版本升级治理工作台,支持手动录入数据质量问题,新增对“标签”对象的问题管理,并且可对问题进行分类。问题清单和整改流程也进行了优化,手动录入的问题和自动识别的问题可统一整改追踪,并提供操作记录,以增强数据质量管理的响应速度和效率。
随着企业数据治理开展到一定阶段,对质量监控规则的精细化管理诉求进一步提升,需要为质量规则配置更多属性信息以支持后续的统计的分析。Dataphin V4.0版本新增了自定义质量规则属性的能力,通过简单的配置即可实现灵活、高效的规则管理,满足多样化诉求。
Dataphin 4.0版本针对补数据操作进行了升级,旨在提升用户体验。在面对数据缺失问题时,如某企业因上游系统故障需紧急回刷历史数据,Dataphin提供了按节点类型筛选下游节点的功能,减少了手动操作的错误和时间消耗。对于大规模任务管理,如银行数据中心的历史数据补充,Dataphin支持按照节点名称批量补数据,提高了效率和准确性。此外,还优化了逻辑表补数据的性能,并允许配置超时任务自动重跑,以应对调度高峰。
Dataphin作为企业级数据建设和治理平台,提供了丰富的产品功能,在日常使用的过程中,如何分配权限是管理员一直关心的问题。Dataphin V4.0版本支持自定义全局角色功能,帮助管理员实现按岗赋权,使管理员能够自由配置每个角色在Dataphin中的菜单和功能权限,确保平台的权限安全。
在V4.0版本中,Dataphin推出了智能推荐映射关系功能,用户可以基于内置特征或创建自定义特征,对数据内容进行表示,并将其与数据标准关联,进而智能映射映射关系,尤其在字段分布广泛和命名多变的情况下,可以提高映射的准确性和效率,加速了数据标准实施。
Dataphin v3.13引入了跨节点参数功能,允许任务间传递消息。输出节点(如SQL、Shell、Python任务)能输出参数,输入节点可以接收并使用这些参数。此功能解决了通过公共存储中转消息的复杂性和低效问题。应用场景包括:金融企业的币种转换,其中汇率任务(输出节点)提供汇率,转换任务(输入节点)使用该汇率;以及产品目录更新检查,通过跨节点参数控制是否需要执行数据导入任务。用户可以通过任务编辑器设置和传递跨节点参数,并在运维中进行补数据操作。
关联逻辑表主题式查询
第一时间了解数据治理领域的最新动态
DataphinV3.14支持传统数据库调用,带来全新高效研发体验,及时全面的数据保护、自定义监控和审批让数据治理更灵活自由。
通过Dataphin公共云多租户的方式,可以实现零部署成本、零运维成本构建智能大数据研发与治理平台。Dataphin部署在阿里云上,已有的数据源部署在本地机房,因此数据上云第一步,首先要打通网络。本文将介绍本地IDC机房的数据源网络打通的不同方案。
当前大数据时代背景下,企业对数据的处理、分析和实时应用的需求日益增强。阿里云MaxCompute广泛应用于海量数据的ETL、数据分析等场景,但在将处理后的数据进一步同步至在线数据库系统,如ADB MySQL 3.0(阿里云自研的新一代云原生关系型数据库MySQL版)以支持实时查询、业务决策等需求时,可能会遇到数据迁移速度缓慢的问题。 DataphinV3.14版本支持外表导入SQL的带参调度,实现通过MaxCompute外表的方式将数据批量同步至ADB MySQL 3.0中,显著提升数据迁移的速度和效率。
在Dataphin中, 经常遇到需要连接外部服务来实现一些特定的功能, 如连接外部FTP检测FTP服务的连通性. 实现此类功能, 一般是使用shell或者Python代码任务. 由于外部服务大多都有访问鉴权, 就需要在shell/Python代码中向服务端发送账号密码(密钥),如何在shell或者Python任务中安全的使用账号密码?
Dataphin数据服务API提供便捷的API开发及运维、应用调用权限管理等功能,为数据业务化提供了坚实的支撑。在应用调用API的时候,Dataphin可支持通过AcessKey方式的调用鉴权。而在企业内部网络中,也可以使用IP白名单方式简化调用。本文将为您介绍如何开启IP白名单的调用鉴权。
Dataphin v4.0提升了即席查询体验,新增支持多条SQL语句同时执行并查看独立日志,允许用户移动或隐藏列,以及全屏查看结果。此外,为增强数据安全,引入了禁止数据复制的功能。新版本还优化了细节,如单行详细信息查看和更灵活的列管理,旨在提高数据分析效率并保障数据安全。