从事软件开发,分享包括但不限于“技术”、“运营”、“产品”等。
本文从一位程序员的角度出发,讲述了其小学弟在Java开发面试中遇到的难题——抽象类与接口的区别。文章不仅详细解析了两者的定义、特点及主要差异,还提供了实际开发中的应用场景和面试答题技巧,帮助读者更好地理解和应用这一重要知识点。
小米,29岁程序员,分享领域模型落地知识。文章解析领域、子域、限界上下文、领域对象、聚合、工厂与仓库等概念,助你理解领域驱动设计。
大家好,我是小米。本文将介绍如何在实际项目中进行性能压测和优化,包括单台服务器和集群压测、使用JMeter、监控CPU和内存使用率、优化Tomcat和数据库配置等方面的内容,帮助你在高并发场景下提升系统性能。希望这些实战经验能助你一臂之力!
本文介绍了Java中`Object`类的几个重要方法,包括`toString`、`equals`、`hashCode`、`finalize`、`clone`、`getClass`、`notify`和`wait`。这些方法是面试中的常考点,掌握它们有助于理解Java对象的行为和实现多线程编程。作者通过具体示例和应用场景,详细解析了每个方法的作用和重写技巧,帮助读者更好地应对面试和技术开发。
本文介绍了 Java 中常用的两个集合类 ArrayList 和 LinkedList,分析了它们的底层实现、特点及适用场景。ArrayList 基于数组,适合频繁查询;LinkedList 基于链表,适合频繁增删。文章还讨论了如何实现线程安全,推荐使用 CopyOnWriteArrayList 来提升性能。希望帮助读者选择合适的数据结构,写出更高效的代码。
本文介绍了从Nacos 1.3.0升级到2.3.0的过程及注意事项,涵盖单机与集群模式的升级步骤,特别分享了一次因配置文件中多余空格导致的服务启动失败的经历,提醒读者注意配置细节。
Hello,大家好!我是热爱分享技术的小米。今天探讨在个人项目中如何保证数据一致性,尤其是在缓存与数据库同步时面临的挑战。文中介绍了常见的CacheAside模式,以及结合消息队列和请求串行化的方法,确保数据一致性。通过不同方案的分析,希望能给大家带来启发。如果你对这些技术感兴趣,欢迎关注我的微信公众号“软件求生”,获取更多技术干货!
本文介绍了秒杀场景下的“削峰填谷”策略,通过消息队列缓冲用户请求,避免高并发对系统造成冲击。文中详细解释了消息队列的工作原理及如何通过预扣减库存和分布式锁确保数据一致性,同时还提出了合理的消息队列配置、高可用性及数据库负载均衡等最佳实践。通过这些技术手段,可有效提升系统的稳定性和用户体验。
本文介绍了如何使用布隆过滤器高效管理用户昵称重复问题。在互联网项目中,确保昵称唯一性至关重要,可避免混淆、增强安全性和保持数据一致性。布隆过滤器通过哈希函数和位数组实现快速查询,具有低内存占用和高速查询的优点。文中详细解释了其工作原理,并提供了Java代码示例,帮助读者理解和应用这一技术,提升项目性能。
本文详细介绍了如何在微服务环境下从 Nacos 1.3.0 升级到 2.3.0,并确保 Seata 各版本的兼容性。作者小米分享了升级过程中的关键步骤,包括备份配置、更新鉴权信息及验证测试等,并解答了常见问题。通过这些步骤,可以帮助读者顺利完成升级并提高系统的安全性与一致性。
本文由技术分享者小米带来,详细介绍了如何设计一个高效、稳定且易扩展的排行榜系统。内容涵盖项目背景、技术选型、数据结构设计、基本操作实现、分页显示、持久化与数据恢复,以及高并发下的性能优化策略。通过Redis与MySQL的结合,确保了排行榜的实时性和可靠性。适合对排行榜设计感兴趣的技术人员参考学习。
本文介绍了多线程编程中的经典问题——多线程交替打印ABC。通过三种方法实现:使用`wait()`和`notify()`、`ReentrantLock`与`Condition`、以及`Semaphore`。每种方法详细讲解了实现步骤和代码示例,帮助读者理解和掌握线程间的同步与互斥,有效解决并发问题。适合不同层次的开发者学习参考。
大家好,我是小米!今天分享手写阻塞队列(Blocking Queue)教程,深入讲解并发编程中的 wait() 和 notifyAll() 机制,通过代码实战,让你轻松掌握生产者-消费者模型中的阻塞队列实现!
嗨,大家好!我是你们的技术小伙伴——小米。今天带大家深入了解并手写一个实用的LRU Cache(最近最少使用缓存)。LRU Cache是一种高效的数据淘汰策略,在内存有限的情况下特别有用。本文将从原理讲起,带你一步步用Java实现一个简单的LRU Cache,并探讨其在真实场景中的应用与优化方案,如线程安全、缓存持久化等。无论你是初学者还是有一定经验的开发者,都能从中受益。让我们一起动手,探索LRU Cache的魅力吧!别忘了点赞、转发和收藏哦~
嗨,大家好!我是小米,一名热爱技术分享的程序员。今天要带大家了解堆排序——一种基于二叉堆的数据结构,具有O(n log n)时间复杂度的选择排序算法。堆排序分为构建大顶堆和排序两个阶段:先建堆使根节点为最大值,再通过交换根节点与末尾节点并调整堆来逐步排序。它稳定高效,空间复杂度仅O(1),适合对稳定性要求高的场合。虽然不如快速排序快,但在避免递归和节省空间方面有优势。一起动手实现吧!如果有任何疑问,欢迎留言交流!
快速排序(QuickSort)是经典的排序算法之一,基于分治思想,平均时间复杂度为O(n log n),广泛应用于各种场合。在这篇文章中,我们将手写一个Java版本的快速排序,从基础实现到优化策略,并逐步解析代码背后的逻辑。
嗨,大家好!我是小米,热爱分享的技术程序员。今天聊聊红包算法——在保证公平、随机与乐趣的同时,如何巧妙分配红包金额。主要分为线性切割法与二倍均值法。前者通过随机切割区间,后者则确保金额在一定范围内随机,使分配更均匀。两种方法各有千秋,适用于不同场合,希望能给你带来灵感!
小米带你了解如何使用Redis高效统计网站的在线与并发用户数。通过维护用户的活跃时间,利用Redis有序集合(Sorted Set)特性,可实时更新在线用户列表并统计数量。具体实现包括记录用户上线时间、定期清理离线用户及统计特定时间窗口内的活跃用户数。这种方法适用于高并发场景,保证统计结果的实时性和准确性。跟着小米一起探索Redis的强大功能吧!
小米介绍了一种实用的短域名系统设计,用于将冗长的URL转化为简短链接。短链接不仅节省空间,便于分享,还能支持数据分析。系统通过唯一编号结合62进制转换生成短标识,并利用如Redis这样的数据库存储长链接与短标识的映射关系。最后,通过302重定向实现用户访问时的长链接恢复。这一方案适用于多种场景,有效提升用户体验与数据追踪能力。
大家好,我是小米,一名热爱技术分享的程序员。今天探讨如何在内存有限(仅10MB)时找到100亿个整数的中位数。面对庞大的数据量(约400GB)及内存限制,我们将采用分治策略:先依据整数的最高二进制位将数据分为非负数与负数两个文件,逐步缩小范围直至能在内存中处理。当内存充足时,可直接加载所有数据并排序找到中位数。这一问题不仅考验算法能力,也是处理大数据时资源管理的关键。
你好,我是小米。本文介绍如何在2GB内存中找出20亿个整数里出现次数最多的数。通过将数据用哈希函数分至16个小文件,每份独立计数后选出频次最高的数,最终比对得出结果。这种方法有效解决大数据下的内存限制问题,并可应用于更广泛的场景。欢迎关注我的公众号“软件求生”,获取更多技术分享!
大家好,我是小米。今天探讨操作系统中的死锁问题——两个或更多进程因争夺资源陷入相互等待的状态。死锁有四个必要条件:互斥、请求与保持、非剥夺及循环等待。解决策略包括:使用乐观锁破坏互斥条件;资源一次性分配避免请求与保持;允许资源剥夺;以及采用资源有序分配法消除循环等待。通过这些方法,可以有效预防和解决死锁,提升系统稳定性和效率。希望本文能帮助你更好地理解并处理死锁问题!
大家好,我是小米,热爱分享技术的大哥哥!今天聊的是操作系统中的页面置换算法。它解决的是内存满载时,如何选择合适的页面移出以腾出空间的问题。主要有三种算法:FIFO(先进先出),简单但性能不佳;LRU(最近最久未使用),考虑时间局部性,性能较好但实现较复杂;OPT(最佳置换),理论上最优但无法实际应用。这些算法各有千秋,在实际应用中需根据场景选择最合适的方案。希望这能帮大家更好地理解内存管理的核心机制!
本文介绍了操作系统中用户态与核心态的概念,两者分别代表程序执行的不同权限级别。用户态限制应用程序访问敏感资源以确保安全,而核心态赋予操作系统完全控制权以管理硬件和内存。文章详细解释了这两种状态的重要性、区别以及如何在二者之间进行切换,包括通过系统调用、异常和中断等方式。理解这些概念对于确保系统的稳定性和安全性至关重要。
在操作系统中,进程间通信(IPC)是至关重要的,它提供了多种机制来实现不同进程间的数据交换和同步。本篇文章将详细介绍几种常见的IPC方式,包括管道、信号、消息队列、共享内存、信号量和套接字,帮助你深入理解并合理应用这些通信方式,提高系统性能与可靠性。
以下是内容摘要,已简化并保持在240字符以内: 嗨,我是小米!今天聊聊进程、线程和协程: - **进程**:资源分配基本单位,独立且隔离。 - **线程**:进程内执行单元,轻量级且共享资源。 - **协程**:比线程更轻量,适合I/O密集型任务。 每种都有独特特点和适用场景,选择合适可优化性能。希望对你有所帮助!更多内容,请关注我的公众号“软件求生”。
大家好,我是小米,在Web开发中,Cookie和Session是两种重要的状态管理工具。它们有着不同的存储位置、安全性和应用场景。本篇文章将详细解析它们的区别和应用,让你在开发过程中能够更加游刃有余。让我们一起深入了解吧!
在Web开发中,重定向和转发是常见操作,但它们有何不同?本文将详细解析重定向与转发的原理、区别及实际应用,帮助你在开发中更好地选择和使用这两种技术。
大家好,我是小米,今天我们来聊聊HTTP协议中的GET和POST请求。它们在数据传输方式、安全性和应用场景上有不同特点。本文将详细解析它们的区别和特点,帮助你更好地理解和运用这两种请求方式。让我们一起学习吧!
大家好,我是小米,今天我们来聊聊HTTP协议中的GET和POST请求。它们在数据传输方式、安全性和应用场景上有不同特点。本文将详细解析它们的区别和特点,帮助你更好地理解和运用这两种请求方式。让我们一起学习吧!
大家好,我是你们的技术小伙伴小米!今天我们来聊聊HTTP和HTTPS的区别以及HTTPS链接的建立过程,同时了解两种常见的加密算法——对称加密和非对称加密。通过这篇文章,你将深入理解这些网络基础知识,为网站安全保驾护航!
大家好!我是小米,今天带大家深入探讨互联网基础——HTTP协议。从HTTP/1.0到HTTP/1.1,再到HTTP/2.0,它们是如何发展的,解决了哪些问题,有哪些显着区别?通过这这篇文章,你将全面了解这些协议的变革和优化,掌握关键技术点,提升开发效率。快来一起学习吧!
嗨,大家好!今天,我要带大家深入了解以太网报文格式,这是现代网络通信的重要基础。无论你是网络工程师、开发者,还是对技术感兴趣的朋友,这篇文章都将为你揭开以太网的神秘面纱,让你更好地理解和应用这一关键技术。准备好了吗?让我们开始吧!
**UDP报文格式简述:**包含源端口、目的端口、长度和检验和4个字段,用于传输层无连接通信。IP报文格式关键点:版本、首部长度、服务类型、总长度、标识、TTL和首部检验和,确保数据在网络中的路由与可靠性。了解这些基础对于网络协议学习至关重要。
**TCP报文格式详解摘要** 探索TCP,传输层的关键协议,提供可靠数据传输。报文含源/目的端口(标识应用),32位序号(跟踪字节顺序),确认序号(确认接收),4位首部长度,6位标志(URG, ACK, PSH, RST, SYN, FIN),窗口大小(流量控制),检验和(数据完整性),紧急指针(优先数据)及可变长选项(如MSS, 时间戳)。了解这些字段,能更好地理解TCP连接的建立、管理和数据交换。
TCP粘包是网络编程中的问题,因TCP的Nagle算法和数据缓存机制导致。发送方发送的小数据包可能被合并,接收方如果读取速度慢也可能合并数据包。解决方法包括:发送定长包、包尾加特殊标记(如FTP的`\r\n`)或包头携带包体长度。理解原因并选择合适方案能确保数据正确解析。
**TCP可靠传输与拥塞控制概要:** 小米讲解TCP如何确保数据可靠性。TCP通过分割数据、编号段、校验和、流量控制(滑动窗口)和拥塞控制(慢开始、拥塞避免、快重传、快恢复)保证数据安全传输。拥塞控制动态调整窗口大小,防止网络过载,提升效率。当连续收到3个相同ACK时执行快重传,快恢复避免剧烈波动。关注“软件求生”获取更多技术内容。
**TCP与UDP是网络协议,TCP提供可靠连接(面向连接、顺序传输、错误检查),适合HTTP、FTP、SMTP等需要数据完整性的应用。UDP则是无连接、快速但不可靠,常用于DNS、RIP、SNMP等实时或效率优先的场景。**
**网络五层模型简介:** 探索网络服务的分层结构,从应用层开始,包括HTTP(网页传输)、SMTP(邮件)、DNS(域名解析)和FTP(文件传输)协议。传输层涉及TCP(可靠数据传输)和UDP(高效但不可靠)。网络层由IP(路由数据包)、ICMP(错误报告)和路由器构成。数据链路层处理MAC地址和帧传输,物理层规定了电缆、连接器和信号标准。了解这些基础,有助于深入理解网络运作机制。
**网络基础知识概览:** 探索网络通信的关键模型——OSI七层模型和TCP/IP五层模型。OSI模型(物理、数据链路、网络、传输、会话、表示、应用层)提供理论框架,而TCP/IP模型(物理、数据链路、网络、传输、应用层)更为实际,合并了会话、表示和应用层。两者帮助理解数据在网络中的传输过程,为网络设计和管理提供理论支持。了解这些模型,如同在复杂的网络世界中持有了地图。
**TCP四次挥手详解**:客户端发送FIN进入FIN-WAIT-1,服务器回ACK进CLOSE-WAIT;服务器发送FIN,客户端回ACK进TIME-WAIT,等待2MSL确保数据传输完毕,防止新旧连接混淆。四次挥手确保双方完全关闭连接,解决数据丢失问题。过多TIME-WAIT可通过负载均衡、优化关闭顺序或调整系统参数缓解。关注“软件求生”获取更多技术内容!
**摘要:** 本文介绍了如何在Kafka中查找偏移量为23的消息,涉及ConcurrentSkipListMap的查询、索引文件的二分查找及日志分段的物理位置搜索。还探讨了Kafka日志分段的切分策略,包括大小、时间、索引大小和偏移量达到特定阈值时的切分条件。理解这些对于优化Kafka的性能和管理日志至关重要。
**Kafka Rebalance详解:**当消费者组成员、订阅主题或分区变化时,集群需重新分配任务。涉及关键点:成员增减、主题数量及分区数变更。Rebalance包括Leader选举、RangeAssignor算法的分区分配,以及创建、删除、修改和查询Topic的基本操作。了解这些有助于优化Kafka集群管理。关注“软件求生”获取更多技术内容!
大家好,我是小米,今天给大家带来一篇关于 Kafka 核心机制的深度解析文章。本文将详细讲解 Kafka 的 Leader 选举、副本消息同步以及相关概念 LEO 和 HW,帮助大家更好地理解和应用 Kafka,提升处理分布式系统的能力。快来一起学习吧!
```markdown 🚀 Kafka 生产消费流程揭秘:Producer 创建守护线程Sender,消息经拦截器→序列化器→分区器→缓冲区。批量发送基于batch.size或linger.ms条件。acks参数控制可靠性,从0(最快但不可靠)到all(最可靠)。消息重试和元数据返回确保不丢失。关注“软件求生”公众号,探索更多技术! ```
**Kafka一致性详解:** 讲解了幂等性如何通过ProducerID和SequenceNumber确保消息唯一,防止重复处理,维持数据一致性。Kafka利用Zookeeper进行控制器和分区Leader选举,应对节点变动,防止脑裂,确保高可用性。实例中,电商平台用Kafka处理订单,保证每个订单仅处理一次,即使在异常情况下。关注微信公众号“软件求生”获取更多技术内容。
**Kafka高可用性概览** - 创建Topic时设置`--replication-factor 3`确保数据冗余和高可用。 - 分配角色:Leader处理读写,Follower同步数据,简化管理和客户端逻辑。 - ISR(In-Sync Replicas)保持与Leader同步的副本列表,确保数据一致性和可靠性。 - 设置`acks=all`保证消息被所有副本确认,防止数据丢失,增强一致性。 - 通过这些机制,Kafka实现了分布式环境中的数据可靠性、一致性及服务的高可用性。
小米探讨了Kafka消费组重平衡问题,这是大数据领域的一大挑战,特别是在大规模集群中。重平衡因组成员增减、主题数量变化或分区数变化触发,可能使Kafka短暂不可用,影响TPS。解决办法包括调整超时时间、心跳频率和拉取间隔以减少重平衡频率和影响。了解触发原因和机制,以及实施优化策略,对于提升Kafka集群的稳定性和性能至关重要。
**摘要:** 本文介绍了Kafka和ZooKeeper的角色及其关系。Kafka是分布式流处理平台,用于实时数据管道和流应用;ZooKeeper是分布式协调服务,处理同步和集群协调。在Kafka中,ZooKeeper存储元数据,管理集群成员,选举Controller。随着KIP-500提案,Kafka计划移除对ZooKeeper的依赖,转向基于Raft的共识机制,以简化架构、提高性能和一致性。此外,文章提到了etcd作为基于Raft的元数据存储系统的应用。本文旨在帮助读者理解ZooKeeper在Kafka面试中的重要性,并了解Kafka的未来发展方向。
**Kafka的Replica副本是保证数据可靠性的关键机制。每个Partition有Leader和Follower副本,Leader处理读写请求及管理同步,Follower被动同步并准备成为新Leader。从Kafka 2.4开始,Follower在完全同步时也可提供读服务,提升性能。数据一致性通过高水位机制和Leader Epoch机制保证,后者更精确地判断和恢复数据一致性,增强系统容错能力。**