暂时未有相关云产品技术能力~
YOLO骨灰级玩家
【YOLOv8改进 - 注意力机制】c2f结合CBAM:针对卷积神经网络(CNN)设计的新型注意力机制
【YOLOv8改进 - 特征融合】DySample :超轻量级且高效的动态上采样器
【YOLOv8改进 - 特征融合】CARAFE:轻量级新型上采样算子,助力细节提升
【YOLOv8改进 - 特征融合NECK】 DAMO-YOLO之RepGFPN :实时目标检测的创新型特征金字塔网络
【YOLOv8改进 - 特征融合】 YOGA iAFF :注意力机制在颈部的多尺度特征融合
【YOLOv8改进 - Backbone主干】VanillaNet:极简的神经网络,利用VanillaNet替换YOLOV8主干
【YOLOv8改进 - Backbone主干】VanillaNet:极简的神经网络,利用VanillaBlock降低YOLOV8参数
【YOLOv8改进 - Backbone主干】FasterNet:基于PConv(部分卷积)的神经网络,提升精度与速度,降低参数量。
【YOLOv8改进 - 注意力机制】SENetV2: 用于通道和全局表示的聚合稠密层,结合SE模块和密集层来增强特征表示
【YOLOv8改进 - 注意力机制】ContextAggregation : 上下文聚合模块,捕捉局部和全局上下文,增强特征表示
【YOLOv8改进- Backbone主干】BoTNet:基于Transformer,结合自注意力机制和卷积神经网络的骨干网络
【YOLOv8改进- 多模块融合改进】GhostConv + ContextAggregation 幽灵卷积与上下文聚合模块融合改进,助力小目标高效涨点
YOLO目标检测专栏探讨了Transformer在视觉任务中的效能与计算成本问题,提出EfficientViT,一种兼顾速度和准确性的模型。EfficientViT通过创新的Cascaded Group Attention(CGA)模块减少冗余,提高多样性,节省计算资源。在保持高精度的同时,与MobileNetV3-Large相比,EfficientViT在速度上有显著提升。论文和代码已公开。CGA通过特征分割和级联头部增加注意力多样性和模型容量,降低了计算负担。核心代码展示了CGA模块的实现。
YOLO目标检测专栏探讨了模型优化,提出SPConv,一种新卷积操作,减少特征冗余,提升效率。SPConv将特征分为代表性和不确定部分,分别处理,再融合。实验显示,SPConv在速度和准确性上超越现有基准,减少FLOPs和参数。论文和PyTorch代码已公开。更多详情及实战案例见CSDN博客链接。
YOLO目标检测专栏探讨了模型创新,如注意力机制,聚焦通道和空间信息的全局注意力模组(GAM),提升DNN性能。GAM在ResNet和MobileNet上优于最新方法。论文及PyTorch代码可在给出的链接找到。核心代码展示了GAM的构建,包含线性层、卷积和Sigmoid激活,用于生成注意力图。更多配置详情参阅相关博客文章。
YOLO目标检测专栏聚焦模型创新与实战,介绍了一种高效通道注意力模块(ECA),用于提升CNN性能。ECA仅用少量参数实现显著性能增益,避免了维度缩减,通过1D卷积进行局部跨通道交互。代码实现展示了一个ECA层的结构,该层在多种任务中展现优秀泛化能力,同时保持低模型复杂性。论文和代码链接分别指向arXiv与GitHub。更多详情可查阅CSDN博主shangyanaf的相关文章。
YOLO目标检测专栏聚焦于模型的改进和实战应用,介绍了MobileNetV4,它在移动设备上优化了架构。文章提到了UIB(通用反向瓶颈)模块,结合了多种结构,增强了特征提取;Mobile MQA是专为移动平台设计的注意力层,提升了速度;优化的NAS提升了搜索效率。通过这些创新,MNv4在不同硬件上实现了性能和效率的平衡,且通过蒸馏技术提高了准确性。模型在Pixel 8 EdgeTPU上达到87%的ImageNet-1K准确率,延迟仅为3.8ms。论文、PyTorch和TensorFlow实现代码链接也已提供。
YOLO目标检测专栏探讨了YOLO的创新改进,如多尺度特征提取的DWRSeg网络。该网络通过区域残差化和语义残差化提升效率,使用DWR和SIR模块优化高层和低层特征。DWRSeg在Cityscapes和CamVid数据集上表现优秀,速度与准确性兼备。论文和代码已公开。核心代码展示了一个包含DWR模块的卷积层。更多配置详情见相关链接。
YOLOv8专栏探讨了该目标检测模型的创新改进,包括使用Mamba模型的线性注意力Transformer变体,称为MLLA。Mamba的成功关键在于遗忘门和块设计,MLLA结合了这些优点,提升了视觉任务的性能。文章提供全面分析,并提出MLLA模型,其在效率和准确性上超过多种视觉模型。论文和代码可在提供的链接中找到。MLLA Block的代码示例展示了如何整合关键组件以实现高效运算。更多配置详情见相关链接。
这个摘要主要涵盖了一个关于YOLO目标检测的深度学习专栏的内容概览。该专栏专注于YOLO算法的历史、前沿研究和实战应用,提供了一系列的文章,详细讲解了YOLO的改进方法,包括卷积优化、损失函数创新、注意力机制、网络结构和主干网络的更新,以及针对不同场景如红外成像、小目标检测等的应用。此外,还提供了每周多次的更新频率以保持内容的时效性,并指导读者进行论文写作和项目实现,包括具体的代码示例和实战项目,如行人检测、对象分割、姿态估计等。该专栏还涉及到面试准备和实习就业指导,帮助读者提升在图像算法领域的专业技能。
YOLOv8专栏探讨了针对目标检测的ConvNet创新,提出ConvNeXt模型,它挑战Transformer在视觉任务中的主导地位。ConvNeXt通过增大卷积核、使用GeLU激活、切换到LayerNorm和改进下采样层,提升了纯ConvNet性能,达到与Transformer相当的准确率和效率。论文和代码已公开。
YOLOv8专栏探讨了目标检测的创新改进,包括模型扩展和神经架构搜索。提出的新方法使用复合系数平衡网络的深度、宽度和分辨率,产生了EfficientNets系列,其在准确性和效率上超越了先前的ConvNets。EfficientNet-B7在ImageNet上达到84.3%的顶级准确率,同时保持较小的模型大小和更快的推理速度。文章提供了论文和代码链接,以及核心的EfficientNet模型构建Python代码。
YOLOv8专栏探讨了目标检测的创新改进,提出了GiraffeDet,一种轻量级主干和深度颈部模块结合的高效检测网络。GiraffeDet使用S2D-chain和GFPN,优化多尺度信息交换,提升检测性能。代码和论文可在相关链接找到。GFPN通过跳跃和跨尺度连接增强信息融合。文章还展示了核心组件如SPPV4、Focus和CSPStage的代码实现。
YOLOv8专栏介绍了FocalNets,一种取代自注意力的新型模块,提升模型在图像分类、检测和分割任务中的性能。Focal Modulation包括局部聚焦、全局调制和多尺度处理,通过融合CNN和自注意力优点。代码展示了FocalModulation模块的实现。论文和代码已开源。在多个基准测试中,FocalNets超越了Swin等先进模型。
YOLOv8专栏探讨了YOLO系列的创新改进,提出RCS-YOLO模型,它在脑肿瘤检测中超越YOLOv6/v7/v8,精度提升1%,速度增快60%(达到114.8 FPS)。RCS-OSA模块结合RepVGG/ShuffleNet优点,通过通道重参数化和混洗优化卷积,提升速度和准确性。代码和论文可在提供的链接获取。
YOLOv8专栏探讨了深度学习中信息瓶颈问题,提出可编程梯度信息(PGI)和广义高效层聚合网络(GELAN),改善轻量级模型的信息利用率。GELAN在MS COCO数据集上表现优越,且PGI适用于不同规模的模型,甚至能超越预训练SOTA。[论文](https://arxiv.org/pdf/2402.13616)和[代码](https://github.com/WongKinYiu/yolov9)已开源。核心组件RepNCSPELAN4整合了RepNCSP块和卷积。更多详情及配置参见相关链接。
YOLOv8专栏探讨了MLP主干网络的创新,如S2-MLPv2,它通过通道扩展和分块空间移位提高性能,达到83.6%的ImageNet top-1准确率。文章介绍了分割注意力模块,用于融合特征图。提供了S2Attention类的代码示例,展示如何结合空间位移和分割注意力。详细内容和实战案例可在[CSDN博客](https://blog.csdn.net/shangyanaf)找到。
YOLOv8专栏探讨了目标检测的创新改进,如整合NLNet和SENet优势的GCBlock,用于高效全局上下文建模。GCNet在多个识别任务中表现优越,同时降低了计算成本。文章提供了论文、代码链接及详细实现,包括特征的全局建模、变换和融合步骤。核心GCBlock代码展示了其结构。更多实战案例和配置见相关链接。
YOLOv8专栏探讨了卷积网络的改进,特别是提出了一种名为HWD的基于Haar小波的下采样模块,用于语义分割,旨在保留更多空间信息。HWD结合了无损编码和特征表示学习,提高了模型性能并减少了信息不确定性。新度量标准FEI量化了下采样的信息保留能力。论文和代码可在提供的链接中找到。核心代码展示了如何在PyTorch中实现HWD模块。
YOLOv8专栏探讨了该目标检测算法的创新改进,包括新机制和实战案例。文章介绍了U-Net v2,一种用于医学图像分割的高效U-Net变体,它通过SDI模块融合语义和细节信息,提升分割准确性。SDI模块结合空间和通道注意力,经通道减缩、尺寸调整和平滑后,用哈达玛积融合特征。提供的核心代码展示了SDI模块的实现。更多详情和论文、代码链接见原文。
YOLOv8专栏介绍了该系列目标检测框架的最新改进与实战应用。文章提出RT-DETR,首个实时端到端检测器,解决了速度与精度问题。通过高效混合编码器和不确定性最小化查询选择,RT-DETR在COCO数据集上实现高AP并保持高帧率,优于其他YOLO版本。论文和代码已开源。核心代码展示了AIFI Transformer层,用于位置嵌入。更多详情见[YOLOv8专栏](https://blog.csdn.net/shangyanaf/category_12303415.html)。
YOLO目标检测专栏介绍了HCF-Net,一种针对红外小目标检测的深度学习模型,包含PPA、DASI和MDCR模块。PPA利用多分支注意力捕获多层次特征,DASI实现自适应特征融合,MDCR通过深度可分离卷积细化空间特征。HCF-Net在SIRST数据集上的实验超越其他模型。论文和代码可在提供的链接中找到。DASI模块通过信道分区选择机制动态融合高维和低维特征。YOLOv8引入了DASI结构,结合不同尺度特征以增强小目标检测。更多配置细节参见相关链接。
YOLO系列目标检测模型的新发展,LS-YOLO专为滑坡检测设计。它使用多尺度滑坡数据集(MSLD)和多尺度特征提取(MSFE)模块,结合ECA注意力,提升定位精度。通过改进的解耦头,利用膨胀卷积增强上下文信息。在滑坡检测任务中,LS-YOLO相对于YOLOv5s的AP提高了2.18%,达到97.06%。论文和代码已开源。
YOLO目标检测专栏探讨了BoTNet,一种在ResNet瓶颈块中用全局自注意力替换卷积的架构,提升实例分割和检测性能。BoTNet表现优于先前的ResNeSt,且在ImageNet上速度更快。文章介绍了多头自注意力(MHSA)机制,用于学习输入的不同部分间的关系。BoTNet的MHSA层整合在低分辨率特征图中,以捕获长距离依赖。YOLOv8进一步引入MHSA,通过具体的模块定义(如提供的`MHSA`类)来增强模型的注意力机制。相关论文和代码链接可供参考。
HCF-Net是针对红外小目标检测的深度学习模型,采用U-Net改进架构,包含PPA、DASI和MDCR模块。PPA利用多分支特征提取增强小目标表示,DASI实现自适应通道融合,MDCR通过多扩张率深度可分离卷积细化空间特征。实验显示,HCF-Net在SIRST数据集上表现出色,超越其他方法。代码和论文可在给出的链接获取。
YOLO目标检测专栏介绍了HCF-Net,一种用于红外小目标检测的深度学习模型,它通过PPA、DASI和MDCR模块提升性能。PPA利用多分支特征提取和注意力机制,DASI实现自适应特征融合,MDCR通过多层深度可分离卷积细化空间特征。HCF-Net在SIRST数据集上表现出色,超越其他方法。论文和代码分别在[arxiv.org](https://arxiv.org/pdf/2403.10778)和[github.com/zhengshuchen/HCFNet](https://github.com/zhengshuchen/HCFNet)上。YOLOv8的PPA类展示了整合注意力机制的结构
YOLOv10专栏介绍了一种名为HAT的新方法,旨在改善Transformer在图像超分辨率中的表现。HAT结合通道和窗口注意力,激活更多像素并增强跨窗口信息交互。亮点包括:1) 更多像素激活,2) 有效跨窗口信息聚合,3) 任务特定的预训练策略。HAT模型包含浅层特征提取、深层特征提取和图像重建阶段。提供的代码片段展示了HAT类的定义,参数包括不同层的深度、注意力头数量、窗口大小等。欲了解更多详情和配置,请参考给定链接。
YOLOv10引入了极化自注意(PSA)块,结合通道和空间注意力,降低信息损失。PSA通过极化过滤保持高分辨率,并用增强处理非线性分布。在2D姿态估计和分割任务上提升1-2点精度,相比基线提升2-4点。代码示例展示了PSA模块如何集成到模型中。更多配置详情见相关链接。
YOLO目标检测专栏探讨了对YOLO框架的创新改进,如中心化特征金字塔(CFP)。CFP引入了空间显式视觉中心方案和全局集中特征规范,通过轻量级MLP与并行视觉中心机制强化特征表示,尤其利于小目标检测。在YOLOv5和YOLOX基础上,CFP实现性能提升。相关代码示例展示了EVCBlock的结构,整合了LVCBlock和LightMLPBlock。更多详情和配置参见[YOLO基础解析+创新改进+实战案例](https://blog.csdn.net/shangyanaf/category_12303415.html)。
YOLOv10专栏聚焦遥感目标检测,提出LSKNet,首个探索大型选择性核的模型。LSKNet利用LSKblock Attention动态调整感受野,处理不同目标的上下文。创新点还包括极化滤波和增强技术,提升信息保留和非线性输出。在HRSC2016等遥感基准上取得SOTA性能。LSKNet代码展示其网络结构,包括多阶段模块和注意力机制。详细配置和任务说明见相关链接。
YOLOv10专栏探讨了将位置信息融入通道注意力的创新方法,提出“坐标注意力”机制,改善移动网络性能。该机制通过两个1D特征编码捕捉空间依赖并保持位置细节,生成增强对象表示的注意力图。简单易整合到现有网络如MobileNet,几乎无额外计算成本,且在ImageNet及目标检测等任务中表现优越。实现代码展示了CoordAtt模块的工作流程。更多详情和配置见链接。
YOLOv10专栏介绍了YOLO-MS,一个优化多尺度目标检测的高效框架。YOLO-MS通过MS-Block和异构Kernel选择提升性能,平衡了计算复杂度与准确性。它在不依赖预训练的情况下,在COCO上超越同类模型,如YOLO-v7和RTMDet。MS-Block包含不同大小卷积的分支,用于增强特征表示。代码示例展示了MSBlock类的定义,用于处理不同尺度特征。该模块可应用于其他YOLO模型以提升性能。更多详情和配置参见相关链接。
YOLOv10专栏介绍了一种新的卷积网络架构SegNeXt,它在语义分割任务中展现出优于Transformer模型的效率和效果。SegNeXt通过名为Multi-Scale Convolutional Attention (MSCA)的组件,结合局部信息聚合、多尺度上下文捕获和通道关系模拟,提升了性能。在多个数据集上,SegNeXt以较少参数实现了超过现有SOTA的性能,特别是在Pascal VOC 2012上,以1/10的参数量达到90.6%的mIoU。YOLOv10引入了MSCA模块,用于增强目标检测的上下文关注。相关代码和配置详情可在链接中找到。
YOLOv10专栏介绍了融合CNN与Transformer的iRMB模块,用于轻量级模型设计。iRMB在保持高效的同时结合了局部和全局信息处理,减少了资源消耗,提升了移动端性能。在ImageNet等基准上超越SOTA,且在目标检测等任务中表现优秀。代码示例展示了iRMB的实现细节,包括自注意力机制和卷积操作的整合。更多配置信息见相关链接。
YOLO目标检测专栏探讨了ViT的改进,提出DilateFormer,它结合多尺度扩张注意力(MSDA)来平衡计算效率和关注域大小。MSDA利用局部稀疏交互减少冗余,通过不同头部的扩张率捕获多尺度特征。DilateFormer在保持高性能的同时,计算成本降低70%,在ImageNet-1K、COCO和ADE20K任务上取得领先结果。YOLOv8引入了MultiDilatelocalAttention模块,用于实现膨胀注意力。更多详情及配置见相关链接。
YOLO目标检测专栏探讨了CNN在低分辨率和小目标检测中的局限性,提出SPD-Conv新架构,替代步长卷积和池化层,通过空间到深度层和非步长卷积保持细粒度信息。创新点包括消除信息损失、通用设计和性能提升。YOLOv5和ResNet应用SPD-Conv后,在困难任务上表现优越。详情见YOLO有效改进系列及项目实战目录。
YOLOv10专栏探讨了目标检测的效率提升,提出BiFPN,一种带加权和自适应融合的双向特征金字塔网络,优化了多尺度信息传递。EfficientDet系列利用这些创新在效率与性能间取得更好平衡,D7模型在COCO测试集上达到55.1 AP。YOLOv8引入MPDIoU,结合BiFPN学习分支权重,提高检测精度。详情见[YOLOv10 创新改进](https://blog.csdn.net/shangyanaf/category_12712258.html)和相关文章。
YOLO目标检测专栏探讨了边框回归损失的创新方法,强调了目标形状和尺度对结果的影响。提出的新方法Shape-IoU关注边框自身属性,通过聚焦形状和尺度提高回归精度。实验显示,该方法提升了检测效果,超越现有技术,在多个任务中达到SOTA。论文和代码已公开。
【YOLO目标检测专栏】探索空间注意力局限,提出感受野注意力(RFA)机制,解决卷积核参数共享问题。RFAConv增强大尺寸卷积核处理能力,不增加计算成本,提升网络性能。已在YOLOv8中实现,详情见YOLO目标检测创新改进与实战案例专栏。
**NAM: 提升模型效率的新颖归一化注意力模块,抑制非显著权重,结合通道和空间注意力,通过批量归一化衡量重要性。在Resnet和Mobilenet上的实验显示优于其他三种机制。源码见[GitHub](https://github.com/Christian-lyc/NAM)。**