暂无个人介绍
在SIGAI之前的公众号文章“大话AdaBoost算法”中我们介绍了集成学习的思想以及Boosting算法,今天的文章中我们将为大家介绍另外一种集成学习算法-随机森林。随机森林由多棵决策树组成,采用多棵决策树联合进行预测可以有效提高模型的精度。
SIGAI特邀作者:mileistone 原创声明:本文为SIGAI 原创文章,仅供个人学习使用,未经允许,不得转载,不能用于商业目的。 感受野是卷积神经网络里面最重要的概念之一,为了更好地理解卷积神经网络结构,甚至自己设计卷积神经网络,对于感受野的理解是必备的。
反向传播算法是人工神经网络训练时采用的一种通用方法,在现代深度学习中得到了大规模的应用。全连接神经网络(多层感知器模型,MLP),卷积神经网络(CNN),循环神经网络(RNN)中都有它的实现版本。
涉及到了图像中位置信息的选择,很容易联想到之前用于目标检测的R-CNN的模型。毕竟CNN(Convolutional Neural Network)在这两年的图像处理上一枝独秀已经“深入人心”。那么把“字符位置”标记成一类,然后直接放入CNN模型处理岂不美哉?不过,现实总不会这么美好,文字的多种情况、字体,以及大面积的文字信息的位置,都对我们直接用R-CNN的方法产生了干扰,让结果产生严重的偏差。
浓缩就是精华。想要把书写厚很容易,想要写薄却非常难。现在已经有这么多经典的机器学习算法,如果能抓住它们的核心本质,无论是对于理解还是对于记忆都有很大的帮助,还能让你更可能通过面试。在本文中,SIGAI将用一句话来总结每种典型的机器学习算法,帮你抓住问题的本质,强化理解和记忆。下面我们就开始了。