暂无个人介绍
Elastic中文社区联合成都阿里中心,将于2019年3月10日,在成都举办一次线下技术交流活动。 本次活动交流内容主要围绕Elastic的开源产品(Elasticsearch、Logstash、Kibana 和 Beats)及周边技术,探讨在搜索、数据实时分析、日志分析、安全等领域的实践与应用。
作为搜索的用户,我觉得最关心的是两个方面:一是召回的结果是否符合预期,二是召回结果的排序是否符合预期。OpenSearch作为一个搜索服务提供平台,在这两个方面我们提供了一定机制方便用户定制自己的召回和排序逻辑。
背景 OpenSearch是一个以云服务方式提供给广大开发者使用的搜索引擎平台。在搜索引擎中,分词是最基础但很重要的功能,其效果会直接影响文档的召回。分词歧义会导致引擎无法召回目标文档。例如: 乒乓球拍卖完了 ==> 乒乓球/拍卖/完了 乒乓球拍 ==> 乒乓/球拍 在上面的case中,短语“乒乓球拍”不同的上下文中分词的结果不一样。
下拉提示是搜索引擎的标配功能,它能起到减少用户输入的作用,自动补全搜索关键字,提升用户使用搜索引擎的体验,好的下拉提示还可以引导用户输入质量高的 query,这些高质量 query 最终能输出用户想要的搜索结果。
背景 Elasticsearch作为一个开箱即用的搜索引擎,其丰富的功能和极低的使用门槛吸引着越来越多的公司和用户选择它作为搜索和数据分析的工具。用户在运维Elasticsearch集群时往往会遇到很多难题,具体来说有下面列举的几点: 使用方式往往比较粗糙,默认的设置并不适合每一个集群和业务,非精细化的设计将会极大的增加集群隐患; 集群出现问题,无法及时定位原因、寻找解决方案,低效的沟通或者解决问题的方式可能会使得问题变得愈发严重; ES提供的监控指标繁杂,指标多,意义不明确,需要一定的专业知识才可以理解,缺乏全局视角; 此外,集群潜在的异常无法发现,更不能及时规避风险。