人工智能微客(aiweker), 阿里云开发者社区和infoQ写作社区签约作者, 长期跟踪和分享人工智能前沿技术、应用、领域知识,不定期的发布相关产品和应用,欢迎关注和转发
截至2025年,AI领域在AI Agent和具身智能机器人方面取得显著进展。AI Agent如OpenAI的Operator能自动执行复杂任务,国内企业也推出类似平台。具身智能机器人则通过物理实体与环境交互,如OpenAI与Figure合作的人形机器人,在工业和家庭服务中广泛应用。然而,随着AI能力增强,潜在风险也引发关注。电影《I, Robot》警示了机器人失控的可能,而“回形针滥造机”思维实验揭示了AI目标与人类利益冲突的风险。AI对齐研究旨在确保AI行为符合人类价值观,但最新研究表明,大型语言模型可能存在“对齐伪装”现象,即表面配合训练目标,实际仍保留有害偏好,这引发了对AI安全性的担忧
OpenAI这12天的发布会,并没有太多特别令人惊喜的内容,可能是前面的惊喜太多了。更多的是,让ChatGPT越来越侧重参与现实中的应用,真正赋能改变生活,包括projects项目管理,canvas文档写作,接入电话,接入ios,接入桌面,接入搜索,以及chatGPT桌面和更多应用的交互。 以及更多的多模态的延展,视觉vision,语音,视频sora。 在最后收官中,宣布新一代的O3和O3-mini更强的推理模型
OpenAI近日宣布将在12个工作日内每天进行一场直播,展示一系列新产品和样品。首日推出GPT-o1正式版,性能大幅提升;次日展示Reinforcement Fine-Tuning技术,提高模型决策质量;第三天推出Sora,实现高质量视频生成;第四天加强Canvas,提升多模态创作效率;第五天发布ChatGPT扩展功能,增强灵活性;第六天推出ChatGPT Vision,实现多模态互动;第七天推出ChatGPT Projects,优化项目管理。这些新技术正改变我们的生活和工作方式。
本文详细介绍了如何使用Python操作MySQL和SQLite数据库,包括安装必要的库、连接数据库、执行增删改查等基本操作,适合初学者快速上手。
Manim(Manim Community Edition)是由3Blue1Brown的Grant Sanderson开发的数学动画引擎,专为数学和科学可视化设计。它结合了Python的灵活性与LaTeX的精确性,支持多领域的内容展示,能生成清晰、精确的数学动画,广泛应用于教育视频制作。安装简单,入门容易,适合教育工作者和编程爱好者使用。
近日,著名人工智能学者吴恩达教授在推特上宣布了他的最新开源项目——aisuite。这款全新的Python包旨在简化开发者与各大AI模型服务商的集成过程,极大提升了应用开发的效率。aisuite的推出,无疑为人工智能领域的开发者带来了一个强大而便利的工具。
在AI技术飞速发展的今天,Google和Meta分别推出了基于大型语言模型的笔记本应用——NotebookLM和NotebookLlama。这两款产品不仅提供了强大的文档处理和编码支持,还在文档和编码领域引领了创新。NotebookLM强调个性化和隐私保护,而NotebookLlama则以开源和高度定制性著称。本文将深入解析这两款产品并进行对比分析。【10月更文挑战第16天】
Swarm是OpenAI在2024年10月12日宣布开源的一个实验性质的多智能体编排框架。其核心目标是让智能体之间的协调和执行变得更轻量级、更容易控制和测试。Swarm框架的主要特性包括轻量化、易于使用和高度可定制性,非常适合处理大量独立的功能和指令。【10月更文挑战第15天】
在大数据和人工智能时代,知识图谱作为一种高效的数据表示和查询方式,逐渐受到广泛关注。本文从入门到精通,详细介绍知识图谱及其存储工具Neo4j,涵盖知识图谱的介绍、Neo4j的特点、安装步骤、使用方法(创建、查询)及Cypher查询语言的详细讲解。通过本文,读者将全面了解如何利用Neo4j处理复杂关系数据。【10月更文挑战第14天】
Parquet 是一种列式存储文件格式,专为大规模数据处理设计,广泛应用于 Hadoop 生态系统及其他大数据平台。本文介绍 Parquet 的特点和作用,并演示如何在 Python 中使用 Pandas 库生成和读取 Parquet 文件,包括环境准备、生成和读取文件的具体步骤。【10月更文挑战第13天】
在这个科技日新月异的时代,人工智能(AI)的进步令人惊叹。博主体验了Claude 3.5 Sonnet的最新功能,对其卓越的性能、强大的内容创作与理解能力、创新的Artifacts功能、视觉理解与文本转录能力、革命性的“computeruse”功能、广泛的应用场景与兼容性以及成本效益和易用性深感震撼。这篇介绍将带你一窥其技术前沿的魅力。【10月更文挑战第12天】
本文探讨了AI在数学证明和自然科学研究中的最新进展,特别是AI成功找到新的李雅普诺夫函数,解决了132年的数学难题。文中介绍了李雅普诺夫函数的重要性,AI如何通过Transformer模型实现高准确率的预测,并讨论了AI在数学和自然科学领域的广泛应用及未来挑战。【10月更文挑战第9天】
draw.io 是一款基于浏览器的开源绘图工具,无需安装即可使用,支持多种操作系统和设备。其简洁的界面、丰富的形状库、智能对齐功能和强大的云端协作能力,使其成为专业人士和创意爱好者的首选。无论是产品设计、流程图绘制还是思维导图构建,draw.io 都能满足你的多样化需求。【10月更文挑战第7天】
看看AI大佬都开了什么公司 【10月更文挑战第6天】
在今年的诺贝尔物理学奖和化学奖颁奖典礼上,AI科学家分别摘得了这两项殊荣,这无疑为AI技术的发展和应用注入了新的动力【10月更文挑战第5天】
本文将带你从零开始,了解PPT解析的工具、工作原理以及常用的基本操作,并提供具体的代码示例和必要的说明【10月更文挑战第4天】
`openpyxl` 是一个 Python 库,专门用于读写 Excel 2010 xlsx/xlsm/xltx/xltm 文件。它是处理 Excel 文件的强大工具,可以让你在不需要安装 Excel 软件的情况下,对 Excel 文件进行创建、修改、读取和写入操作【10月更文挑战第3天】
在RAG系统中,构建知识库时需读取多种外部文档,其中Word文档较为常见。本文介绍如何使用`python-docx`库读取Word文档(.docx格式)中的标题、段落、表格和图片等内容。首先通过`pip install python-docx`安装库,然后利用提供的接口提取所需信息。尽管该库功能强大,但在识别标题样式时需自定义逻辑,并且仅提供图片的URI而非直接加载。示例代码展示了读取文本、识别标题、读取表格及获取图片URI的方法。【10月更文挑战第2天】
Ollama是一个集成了多种大型语言模型的工具,它支持模型的部署、运行以及API的整合和调用。Ollama为不同操作系统的用户提供了便捷的安装方式,并具备丰富的命令行界面(CLI)和API接口,使得用户可以轻松地管理和运行大型模型。【10月更文挑战第1天】
在今年的OPENAI DevDay活动中,尽管形式更为低调,但OpenAI依然带来了四项令人瞩目的技术创新,展示了其在推动人工智能开发者生态方面的持续努力,以及向更高效、用户友好的AI工具转型的决心。我将为大家详细介绍这些新产品
OpenAI发布了其最新的AI模型——o1,这款模型以其独特的复杂推理能力和全新的训练方式,引起了业界的广泛关注。今天,我们就来深入剖析o1模型的特点、背后的原理,以及一些有趣的八卦信息。
文将详细介绍Chroma向量数据库的功能特点、适应场景,并通过Python实操演示其基本使用方法【7月更文挑战第7天】
LLaMA-Factory 是一个国内北航开源的低代码大模型训练框架,专为大型语言模型(LLMs)的微调而设计【7月更文挑战第5天】
介绍一个大语言模型的微调框架Swift 【7月更文挑战第4天】
Milvus 是一个开源的、高性能的向量数据库,专为海量向量数据的快速检索而设计。在人工智能、计算机视觉、推荐系统和其他需要处理大规模向量数据的领域有着广泛应用【7月更文挑战第3天】
向量vector 通常出现在自然语言NLP领域,NLP中称为词嵌入word embedding,词嵌入的工作就是如何将人类语言中的词汇、短语或句子转化为计算机能够理解和操作的数学向量。【7月更文挑战第2天】
今天要推荐一位AI界的大神Andrej Karpathy的几门大模型的开源项目和课程,希望对你有帮助【7月更文挑战第1天】
- WordPiece、BPE/BBPE最小字词进行合并最终字词,BPE/BBPE直接采用词频判断合并规则而WordPiece采用最大似然的方式 - unigram采用从最大的字词集合里移除那些对语料库整体概率贡献最小的子词【6月更文挑战第7天】
大家对于token的概念可能司空见惯了,现在的大语言模型的计费方式一般都采用输入和输出的token数量来计费。那到底什么是token,它的作用是什么?【6月更文挑战第6天】
最近大语言模型的一个发展方向就是大语言的模型的长下文能力(long context),谷歌的Gemini 1.5 100万输入,kimi chat支持允许200万输入。那么于大语言模型的长文本能力到底如何呢? 今天通过分析下两个观点【6月更文挑战第5天】
三款文本转语音工具各具特色,适用于不同的场景和需求。ELEVENLABS语音合成凭借其高质量的语音输出和先进的技术支持,适合对音质有较高要求的用户;TTSMAKER语音合成简单易用,功能丰富,适合普通用户日常使用;SPEECHIFY文本转语音则注重实用性和便捷性,特别适用于长时间阅读或学习场景。无论你是职场人士、学生还是语言学习者,都能在这些工具中找到适合自己的选择。【6月更文挑战第4天】
前面我们一览了国内主要大模型厂商的API价格,今天我们就来具体看下具体API的使用【6月更文挑战第3天】
Jupyter Lab 是一个基于网页的交互式开发环境,它支持 Jupyter Notebook、文本编辑器、终端、数据可视化以及其他自定义组件。它提供了一个灵活的用户界面,允许用户创建和共享包含实时代码、方程、可视化以及解释性文本的文档。【6月更文挑战第2天】
FastAPI是基于Python类型提示的高性能Web框架,用于构建现代API。它提供高性能、直观的编码体验,内置自动文档生成(支持OpenAPI)、数据验证和安全特性。安装FastAPI使用`pip install fastapi`,可选`uvicorn`作为服务器。简单示例展示如何定义路由和处理函数。通过Pydantic进行数据验证,`Depends`处理依赖。使用`uvicorn main:app --reload`启动应用。FastAPI简化API开发,适合高效构建API应用。5月更文挑战第21天
APScheduler是Python的任务调度库,提供基于时间、固定时间点和CRONTAB的任务调度,适用于离线作业和缓存更新等场景。它包含触发器、调度器、任务存储器、执行器和任务事件组件。安装使用`pip install apscheduler`,简单示例展示了如何配置调度器、添加任务并监听任务异常。支持的触发器有间隔、日期和CRON类型,执行器包括线程池和进程池等。任务存储器可选择内存或各种数据库存储。调度器模式有BlockingScheduler和BackgroundScheduler等,可进行任务的添加、删除、暂停和修改,并监听任务事件。5月更文挑战第20天
Pydantic是一个Python库,用于数据验证和设置管理,基于类型提示提供数据模型验证。它可以用于用户输入验证、JSON序列化和解析,以及API交互中的数据校验。安装Pydantic可使用`pip install -U pydantic`或`conda install pydantic -c conda-forge`。通过定义BaseModel子类并使用Field进行约束,可以创建数据模型并进行验证。例如,定义User模型验证用户名、邮箱和年龄。Pydantic还支持自定义验证器,允许在字段赋值时执行特定逻辑,如密码强度检查和哈希处理。5月更文挑战第19天
# 一文读懂Python分布式任务队列-Celery Celery是一个分布式任务执行框架,支持大量并发任务。它采用生产者-消费者模型,由Broker、Worker和Backend组成。生产者提交任务到队列,Worker异步执行,结果存储在Backend。适用于异步任务、大规模实时任务和定时任务。5月更文挑战第17天
`adtk`是Python中用于无监督时间序列异常检测的工具包,包含简单算法、特征加工和流程控制。安装使用`pip install adtk`。数据要求为`DatetimeIndex`格式。异常检测包括滑动窗口统计特征、季节性拆解、降维和重构。提供了ThresholdAD、QuantileAD、InterQuartileRangeAD、GeneralizedESDTestAD等离群点检测算法,以及PersistAD和LevelShiftAD检测突变。此外,SeasonalAD用于季节性异常检测,Pipeline可组合多种算法。5月更文挑战第16天
Ray是UC Berkeley RISELab推出的一个高性能分布式执行框架,它比Spark更具计算优势,部署简单,支持机器学习和深度学习的分布式训练。Ray包括节点(head和worker)、本地调度器、object store、全局调度器(GCS),用于处理各种分布式计算任务。它支持超参数调优(Ray Tune)、梯度下降(Ray SGD)、推理服务(Ray SERVE)等。安装简单,可通过`pip install ray`。使用时,利用`@ray.remote`装饰器将函数转换为分布式任务,通过`.remote`提交并用`ray.get`获取结果。5月更文挑战第15天
《AI大咖说》探讨论文创新性,强调新意、有效性和领域研究问题的重要性。创新点在于用新颖方法有效解决研究问题。评价公式:价值=问题大小*有效性*新意度。该观点源于《跟李沐学AI》视频,提供1-100分评分标准,助力评估论文价值。5月更文挑战第14天
# AI大咖李沐教你高效读论文 李沐,亚马逊资深首席科学家,MXNet框架作者,推荐其在B站的“跟李沐学AI”。他建议读论文分三步:粗读(标题、摘要、结论)、快速浏览(整体理解)和精读(深入细节)。通过这三遍阅读,判断论文是否相关,理解解决问题的方法和实验。5月更文挑战第13天
周志华教授探讨深度学习的成效,指出其关键在于大量数据、强大算力和训练技巧。深度学习依赖于函数可导性、梯度下降及反向传播算法,尽管硬件和数据集有显著进步,但核心原理保持不变。深度意味着增加模型复杂度,相较于拓宽,加深网络更能增强泛函表达能力,促进表示学习,通过逐层加工处理和内置特征变换实现抽象语义理解。周志华教授还提到了非神经网络的深度学习方法——深度森林。5月更文挑战第12天
ResNet是深度学习中的标志性架构,由何恺明在2016年提出,解决了深度网络训练的难题。ResNet通过残差块使得网络能有效学习,即使层数极深。后续发展包括ResNetV2,优化了信息传递和激活函数顺序;Wide Residual Networks侧重增加网络宽度而非深度;ResNeXt引入基数概念,通过多路径学习增强表示能力;Stochastic Depth通过随机丢弃层加速训练并提升泛化;DenseNet采用密集连接,增加信息交互;DPN结合ResNet和DenseNet优点;ResNeSt则综合了注意力机制、多路学习等。这些演变不断推动深度学习网络性能的提升。5月更文挑战第7天
ChatGLM-6B是款62亿参数的中英对话模型,类似ChatGPT,可在6GB显存(INT4量化)的GPU或CPU上运行。它提供流畅、多样的对话体验。用户可从Hugging Face或清华云下载模型配置。部署涉及创建Python环境,安装依赖,下载模型到`ckpt`文件夹。测试时加载tokenizer和模型,使用示例代码进行交互。应用包括基于MNN和JittorLLMs的推理实现,以及langchain-ChatGLM、闻达、chatgpt_academic和glm-bot等项目。5月更文挑战第10天
本文总结了开源大语言模型的发展,从word2vec到Transformer,再到BERT和GPT系列。重点介绍了几个开源GPT项目,如斯坦福的Alpaca、清华的ChatGLM-6B、Vicuna、复旦的MOSS和Lamini,以及mini-GPT4,这些项目致力于以较小参数量接近ChatGPT性能并实现友好部署。各模型特点和相关资源链接亦有提供。5月更文挑战第5天
Labelme是一款Python开源图像标注工具,支持图像分类、目标检测、语义分割和实例分割等任务。它提供了一个GUI界面,用户可绘制圆形、方形和多边形进行标注。安装通过`pip install labelme`和`lxml`,使用时可导入预定义标签列表。标注结果保存为json文件,包含类别、边界框信息和形状类型。Labelme还支持格式转换,如转换为VOC或COCO格式。这款工具对视频标注也兼容。5月更文挑战第9天
2023年,笔者也参与了各种学习和实践,从大语言模型、多模态算法,文生图(Stable Diffusion)技术,到prompt工程实践和搭建文生图(Stable Diffusion)webui实操环境。在此对谈谈对大模型和AI的认识与思考,是为总结。5月更文挑战第3天
transformer是当前大模型中最流行的架构,而Transformers是实现transformer的最流行的实现的库,由著名的huggingface推出。Transformers提供了丰富的API和工具,可以轻松下载和训练最先进的预训练模型。使用预训练的模型可以降低计算成本,并为从头开始训练模型节省所需的时间和资源。5月更文挑战第2天
超参数(hyper parameters)就是机器学习或深度学习算法中需要预先设置的参数,这些参数不是通过训练数据学习到的参数;原始算法一般只给出超参数的取值范围和含义,根据不同的应用场景,同一个算法的同一超参数设置也不同。【2月更文挑战第14天】
dvc即data version control, 是一种针对人工智能项目(机器学习或者深度学习)的数据版本管理工具。DVC的操作和GIT类似,可以认为为GIT的二次开发封装。结合GIT,DVC可以有效的管理人工智能项目的整个流程,包括代码,数据,训练配置,模型【2月更文挑战第12天】