暂时未有相关云产品技术能力~
暂无个人介绍
本教程由肆十二(dejahu)撰写,详细介绍了如何使用YOLOV5训练口罩检测模型,涵盖环境配置、数据标注、模型训练、评估与使用等环节,适合大作业及毕业设计参考。提供B站视频、CSDN博客及代码资源链接,便于学习实践。
CVPR2024医学图像相关论文汇总,涵盖图像重建、超分、配准、分割、生成、分类、联邦学习、预训练模型、视觉-语言模型及计算病理等多个领域。包括多项创新技术,如QN-Mixer、PrPSeg、MAPSeg等,涉及多个开源项目和代码。持续更新中,欢迎关注。原始GIT地址:https://github.com/MedAIerHHL/CVPR-MIA
本文介绍了如何使用服务器训练模型,包括获取服务器、访问服务器、上传文件、配置环境、训练模型和下载模型等步骤。适合没有GPU或不熟悉Linux服务器的用户。通过MobaXterm工具连接服务器,使用Conda管理环境,确保训练过程顺利进行。
KL散度(Kullback-Leibler Divergence)是一种衡量两个概率分布差异的非对称度量,在计算机视觉中有广泛应用。本文介绍了KL散度的定义和通俗解释,并详细探讨了其在变分自编码器(VAE)、生成对抗网络(GAN)、知识蒸馏、图像分割、自监督学习和背景建模等领域的具体应用。通过最小化KL散度,这些模型能够更好地逼近真实分布,提升任务性能。
本项目使用Python的PyQt5和OpenCV库实现了一个简单的摄像头应用。用户可以通过界面按钮打开或关闭摄像头,并实时预览视频流。点击“拍照”按钮可以捕捉当前画面并保存为图片文件。该应用适用于简单的图像采集和处理任务。
LoRA(Low-Rank Adaptation)是一种用于减少大模型微调中参数数量和计算资源的技术。通过引入低秩分解,LoRA 仅更新少量参数,从而显著降低显存消耗和计算需求。适用于大规模预训练模型的微调、跨领域迁移学习、低资源设备部署和多任务学习等场景。例如,在微调 BERT 模型时,LoRA 可以仅调整约 0.1% 的参数,保持与全量微调相近的性能。
肆十二在B站分享了关于THOP(Torch-OpCounter)的实战教学视频。THOP是一个用于计算PyTorch模型操作数和计算量的工具,帮助开发者评估模型复杂度和性能。本文介绍了THOP的安装、使用方法及基本用例,包括如何计算模型的FLOPs和参数量。
`pymysql` 是一个用于连接 MySQL 数据库的 Python 库,支持 SQL 查询的执行和结果处理。通过 `pip install pymysql` 安装后,可使用 `connect()` 方法建立连接,`cursor()` 创建游标执行查询,包括数据的增删改查,并通过 `commit()` 和 `rollback()` 管理事务,最后需关闭游标和连接以释放资源。