暂无个人介绍
心脏病是人类健康的头号杀手。全世界1/3的人口死亡是因心脏病引起的,而我国,每年有几十万人死于心脏病。 所以,如果可以通过提取人体相关的体侧指标,通过数据挖掘的方式来分析不同特征对于心脏病的影响,对于预测和预防心脏病将起到至关重要的作用。本文将会通过真实的数据,通过阿里云机器学习平台搭建心脏病预测案例。<br />数据源:UCI<br />数据大小:7.49 KB<br />字段数量:15<br />使用组件:归一化,拆分,过滤式特征选择,SQL脚本,读数据表,类型转换<br />
本文的业务场景如下: 已知的一份人物通联关系图,每两个人之间的连线表示两人有一定关系,可以是同事关系或者亲人关系等。已知“Enoch”是信用用户,"Evan"是欺诈用户,计算出其它人的信用指数。通过图算法,可以算出图中每个人是欺诈用户的概率,这个数据可以方便相关机构做风控。<br />数据源:风控数据<br />数据大小:896 B<br />字段数量:3<br />使用组件:SQL脚本,读数据表,JOIN<br />
本文的业务场景如下: 通过一份7月份前的用户购物行为数据,获取商品的关联关系,对用户7月份之后的购买形成推荐,并评估结果。比如用户甲某在7月份之前买了商品A,商品A与B强相关,我们就在7月份之后推荐了商品B,并探查这次推荐是否命中。<br />数据源:购物数据<br />数据大小:328 KB<br />字段数量:4<br />使用组件:过滤与映射,SQL脚本,读数据表,JOIN<br />
新闻分类是文本挖掘领域较为常见的场景。目前很多媒体或是内容生产商对于新闻这种文本的分类常常采用人肉打标的方式,消耗了大量的人力资源。本文尝试通过智能的文本挖掘算法对于新闻文本进行分类。无需任何人肉打标,完全由机器智能化实现。<br />数据源:网络爬取新闻数据<br />数据大小:261 KB<br />字段数量:3<br />使用组件:过滤与映射,SQL脚本,读数据表,增加序号列,类型转换<br />
很多农民因为缺乏资金,在每年耕种前会向相关机构申请贷款来购买种地需要的物资,等丰收之后偿还。农业贷款发放问题是一个典型的数据挖掘问题。贷款发放人通过往年的数据,包括贷款人的年收入、种植的作物种类、历史借贷信息等特征来构建经验模型,通过这个模型来预测受贷人的还款能力。<br />数据源:UCI开源数据<br />数据大小:6.62 KB<br />字段数量:10<br />使用组件:过滤与映射,SQL脚本,读数据表,线性回归(旧),合并列<br />
很多农民因为缺乏资金,在每年耕种前会向相关机构申请贷款来购买种地需要的物资,等丰收之后偿还。农业贷款发放问题是一个典型的数据挖掘问题。贷款发放人通过往年的数据,包括贷款人的年收入、种植的作物种类、历史借贷信息等特征来构建经验模型,通过这个模型来预测受贷人的还款能力。 本文借助真实的农业贷款业务场景,利用回归算法解决贷款发放业务。 线性回归,是利用数理统计中回归分析,来确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法,运用十分广泛。本文通过农业贷款的历史发放情况,预测是否给预测集的用户发放他们需要的金额的贷款。<br />数据源:UCI开源数据集<br />数据大小:6.62 KB<br />字段数量:10<br />使用组件:过滤与映射,SQL脚本,读数据表,线性回归(旧),合并列<br />
通过分析2016年一年来的空气指标数据探查雾霾成因,最终成功挖掘出影响雾霾的最关键因素是二氧化氮的排放量。使用了统计分析组件、逻辑回归以及随机森林。<br />数据源:国家气象局数据<br />数据大小:37.3 KB<br />字段数量:7<br />使用组件:归一化,拆分,SQL脚本,读数据表,类型转换<br />
机器学习<br />数据源:<br />数据大小:7.49 KB<br />字段数量:15<br />使用组件:归一化,拆分,SQL脚本,读数据表,类型转换<br />
tjr<br />数据源:<br />数据大小:7.49 KB<br />字段数量:15<br />使用组件:DNN训练,归一化,拆分,SQL脚本,读数据表,类型转换<br />
gawgew<br />数据源:<br />数据大小:7.49 KB<br />字段数量:15<br />使用组件:DNN训练,归一化,拆分,SQL脚本,读数据表,类型转换<br />
贷款发放<br />数据源:<br />数据大小:7.49 KB<br />字段数量:15<br />使用组件:归一化,拆分,SQL脚本,读数据表,类型转换<br />
分享到云栖社区<br />数据源:test<br />数据大小:7.49 KB<br />字段数量:15<br />使用组件:归一化,拆分,SQL脚本,读数据表,类型转换<br />
主要针对,心脏病预测,具体的场景具体访问中阐述<br />数据源:预测数据<br />数据大小:7.49 KB<br />字段数量:15<br />使用组件:归一化,拆分,SQL脚本,读数据表,类型转换<br />
发二娃fa'e'w<br />数据源:各位<br />数据大小:261 KB<br />字段数量:3<br />使用组件:过滤与映射,SQL脚本,读数据表,增加序号列,类型转换<br />