暂时未有相关云产品技术能力~
AI冲
**LLM主要类别概览:** 1. **自回归模型 (AR)** - 如GPT,特点是Decoder-Only,利用上下文信息预测单词,适合自然语言生成任务。 2. **自编码模型 (AE)** - 以BERT为代表,利用上下文的双向信息进行预训练,擅长自然语言理解任务。 3. **序列到序列模型 (Seq2Seq)** - 包含编码器和解码器,用于序列转换任务,如机器翻译。 GPT是Decoder-Only模型,预训练包括两阶段: - **无监督预训练**:预测序列中缺失的单词。 - **有监督微调**:根据下游任务调整模型,如分类、问答等。
**LLM主要类别包括自编码模型(如BERT,专注内容理解),自回归模型,和序列到序列的encoder-decoder模型。BERT是预训练的双向编码器,使用Transformer架构,通过Masked LM和Next Sentence Prediction任务学习上下文表示。其特点包括:使用Transformer层、12层深度、768维特徵、12个注意力头和约1.15亿总参数。BERT在多项NLP任务中刷新纪录,适用于分类和理解任务,但不适合生成任务。**
Prompt-Tuning是一种在大型语言模型中进行下游任务适配的技术,起源于GPT-3的In-context Learning和Demonstration Learning。它通过构建Prompt(提示)和Verbalizer(标签映射)来转换任务,比如将分类任务转化为填空问题。PET模型是Prompt-Tuning的早期实践,通过固定模板(Pattern)和标签词(Verbalizer)来实现。Prompt-Oriented Fine-Tuning是Prompt-Tuning的一种形式,将任务转换为与预训练任务相似的形式,如BERT的MLM任务。
Prompt-Tuning是NLP领域的新兴技术,旨在减少预训练模型Fine-Tuning的需要。它通过构造提示(Prompt)使预训练模型能适应各种任务,降低了语义偏差和过拟合风险。Prompt作为任务的“提示词”,可以是人工定义、自动搜索或生成的模板,与预训练的MLM头结合使用,只需少量甚至无标注数据,通过标签词映射进行预测。此方法从GPT-3的In-Context Learning发展至今,包括了连续Prompt、大规模模型的Instruction-tuning和Chain-of-Thought等进展。 Prompt-Tuning是向少监督、无监督学习迈进的关键研究。
特征缩放是机器学习预处理的关键步骤,它包括归一化和标准化。归一化通过最大最小值缩放,将数据转换到[0,1]区间,有助于梯度下降算法更快收敛,减少数值较大特征的影响。标准化则通过减去均值并除以标准差,确保数据具有零均值和单位方差,适用于关注数据分布情况的算法。例如,欧氏距离计算时,未归一化的特征可能导致模型偏向数值较大的特征。归一化能提升模型精度,尤其是当距离度量如欧式距离时。常见的实现方法有`MinMaxScaler`,它将每个特征值缩放到用户指定的范围,如[0,1]。而`StandardScaler`执行Z-Score标准化,数据分布符合标准正态分布。
GBDT(Gradient Boosting Decision Tree)是一种强大的机器学习技术,用于分类和回归任务。超参数调整对于发挥GBDT性能至关重要。其中,`n_estimators`是一个关键参数,它决定了模型中弱学习器(通常是决策树)的数量。增加`n_estimators`可以提高模型的复杂度,提升预测精度,但也可能导致过拟合,并增加训练时间和资源需求。
近年来,随着Prompt-Tuning技术的崛起,研究者们发现,在拥有超过10亿参数的大规模模型上,采用Prompt-Tuning相较于传统的Fine-tuning方法能带来显著的性能提升。特别是在小样本甚至零样本学习场景下,Prompt-Tuning能够极大地激发模型的潜力。这一成就的取得主要归功于三个关键因素:模型庞大的参数量、训练过程中使用的海量语料,以及精心设计的预训练任务。
AB测试是一种数据驱动的产品优化方法,用于比较不同版本的网页、应用界面或营销策略的效果。
AB测试是一种数据驱动的产品优化方法,用于比较不同版本的网页、应用界面或营销策略的效果。
LangChain由 Harrison Chase 创建于2022年10月,它是围绕LLMs(大语言模型)建立的一个框架,LLMs使用机器学习算法和海量数据来分析和理解自然语言,GPT3.5、GPT4是LLMs最先进的代表,国内百度的文心一言、阿里的通义千问也属于LLMs。LangChain自身并不开发LLMs,它的核心理念是为各种LLMs实现通用的接口,把LLMs相关的组件“链接”在一起,简化LLMs应用的开发难度,方便开发者快速地开发复杂的LLMs应用。 LangChain目前有两个语言的实现:python、nodejs。
LangChain由 Harrison Chase 创建于2022年10月,它是围绕LLMs(大语言模型)建立的一个框架,LLMs使用机器学习算法和海量数据来分析和理解自然语言,GPT3.5、GPT4是LLMs最先进的代表,国内百度的文心一言、阿里的通义千问也属于LLMs。LangChain自身并不开发LLMs,它的核心理念是为各种LLMs实现通用的接口,把LLMs相关的组件“链接”在一起,简化LLMs应用的开发难度,方便开发者快速地开发复杂的LLMs应用。 LangChain目前有两个语言的实现:python、nodejs。
随着ChatGPT迅速火爆,引发了大模型的时代变革,国内外各大公司也快速跟进生成式AI市场,近百款大模型发布及应用。
随着ChatGPT迅速火爆,引发了大模型的时代变革,国内外各大公司也快速跟进生成式AI市场,近百款大模型发布及应用。
注意力机制(Attention Mechanism)对比分析:无Attention模型中,Encoder-Decoder框架处理文本序列时,输入信息被编码为单一的中间语义表示,导致每个目标单词生成时使用相同编码,忽视了输入序列中各单词的不同影响。引入Attention模型后,每个目标单词根据输入序列动态分配注意力权重,更好地捕捉输入相关性,尤其适用于长序列,避免信息丢失。Self-Attention则进一步在序列内部建立联系,用于理解不同部分间的关系,常见于Transformer和BERT等模型中。
注意力机制是受人类认知过程启发的一种深度学习技术,它允许模型动态地聚焦于输入的不同部分,根据上下文分配“注意力”。这种机制最早在序列到序列模型中提出,解决了长距离依赖问题,增强了模型理解和处理复杂数据的能力。基本的注意力计算涉及查询(Q)、键(K)和值(V),通过不同方式(如点积、拼接等)计算相关性并应用softmax归一化,得到注意力权重,最后加权组合值向量得到输出。自注意力是注意力机制的一种形式,其中Q、K和V通常是相同的。在自然语言处理(NLP)中,注意力机制广泛应用在Transformer和预训练模型如BERT中,显著提升了模型的表现。
安装PyTorch时,选择CPU或GPU版本。有Nvidia显卡需装CUDA和cuDNN,可从NVIDIA官网下载CUDA 11.8和对应版本cuDNN。无Nvidia显卡则安装CPU版。安装PyTorch通过conda或pip,GPU版指定`cu118`或`rocm5.4.2`镜像源。验证安装成功使用`torch._version_`和`torch.cuda.is_available()`。
梯度下降是一种迭代优化算法,用于找到多变量函数的最小值。它不直接求解方程,而是从随机初始点开始,沿着梯度(函数增大幅度最大方向)的反方向逐步调整参数,逐步逼近函数的最小值。在单变量函数中,梯度是导数,而在多变量函数中,梯度是一个包含所有变量偏导数的向量。通过计算梯度并乘以学习率,算法更新参数以接近最小值。代码示例展示了如何用Python实现梯度下降,通过不断迭代直到梯度足够小或达到预设的最大迭代次数。该过程可以类比为在雾中下山,通过感知坡度变化来调整前进方向。
softmax激活函数将多个未归一化的值转换为概率分布,常用于多分类问题。交叉熵损失函数,特别是与softmax结合时,是评估分类模型性能的关键,尤其适用于多分类任务。它衡量模型预测概率与实际标签之间的差异。在PyTorch中,`nn.CrossEntropyLoss`函数结合了LogSoftmax和负对数似然损失,用于计算损失并进行反向传播。通过`loss.backward()`,模型参数的梯度被计算出来,然后用优化器如`SGD`更新这些参数以减小损失。
Stable Diffusion是人工智能领域的文本到图像生成模型,基于概率的连续扩散过程,学习数据潜在分布并生成新样本。模型使用Web UI进行交互,提供不同采样器如Euler和DPM++,后者常配以Karras算法。提示词对生成效果至关重要,可以利用GPT等生成提示词。用户还能调整参数如高清修复和批处理次数来影响生成的图像。此外,模型文件(ckpt/safetensors)和Lora微调模型需存放在正确目录以确保功能正常。
创建Python隔离环境使用`python -m venv`命令,如`python -m venv ml`来创建名为`ml`的虚拟环境。激活环境通过`.\<Scripts>\activate`(Windows)。然后可以使用`pip`安装库,如`numpy`、`pandas`、`matplotlib`和`jupyter notebook`。在虚拟环境中,`numpy`是用于数组计算的库,支持数学操作和绘图。`pip install`命令后面可添加`-i Simple Index`指定索引源。完成安装后,激活环境并启动`jupyter notebook`进行开发。
大语言模型(LLM)是深度学习的产物,包含数十亿至数万亿参数,通过大规模数据训练,能处理多种自然语言任务。LLM基于Transformer架构,利用多头注意力机制处理长距离依赖,经过预训练和微调,擅长文本生成、问答等。发展经历了从概率模型到神经网络,再到预训练和大模型的演变。虽然强大,但存在生成不当内容、偏见等问题,需要研究者解决。评估指标包括BLEU、ROUGE和困惑度PPL。
在群晖NAS上使用Docker部署WPS Office并结合Cpolar内网穿透的步骤包括: 1. 通过SSH命令行拉取`linuxserver/wps-office`镜像。 2. 在群晖容器管理界面运行镜像,设置启动选项和端口映射。 3. 本地访问群晖IP:3000端口以使用WPS Office。 4. 安装Cpolar套件,手动添加并安装到群晖,通过9200端口访问其Web管理界面。 5. 使用Cpolar配置内网穿透,实现远程访问WPS Office。 这一过程允许用户即使在没有公网IP的情况下,也能通过Cpolar将内网的WPS Office服务暴露到公网,便于远程办公和文档处理。
使用Docker部署的WPS Office服务可以通过内网穿透工具Cpolar实现远程访问。首先,创建一个名为“wps office”的隧道,选择HTTP协议和3000端口,分配免费的随机域名,并指定中国地区。然后,通过Cpolar的管理界面获取HTTP公网地址,用以远程访问WPS Office。由于随机域名会变化,可以升级Cpolar套餐并保留一个二级子域名,确保长期稳定的远程访问。配置子域名后,更新隧道设置,完成固定公网地址的绑定,从而实现随时随地通过固定地址访问WPS Office。
这篇内容介绍了梯度下降法在机器学习中的应用,特别是在线性回归中的角色。它是一种迭代优化算法,用于找到损失函数最小值的参数。全梯度下降(FGD)使用所有数据计算梯度,适合大数据但计算成本高;随机梯度下降(SGD)随机选取样本,速度快但可能收敛到局部最小值。随机平均梯度下降(SAG)结合两者的优点,提高收敛速度。评估线性回归模型的性能通常使用平均绝对误差、均方误差和均方根误差。文中还展示了波士顿房价预测案例,使用SGDRegressor进行训练,并讨论了学习率的影响。最后提到了如何使用`joblib`库保存和加载模型。
本文详细介绍了Docker中数据卷的作用、特点、管理方式,包括bindmounts和volumes挂载、Dockerfile中的数据卷使用、Docker仓库(公有与私有)以及DockerCompose在多容器应用中的应用。
Tome是一款AI驱动的幻灯片生成工具,输入标题或描述即可自动生成包含标题、大纲、内容和图片的PPT。它提供丰富的模板、素材库、多语言支持及多种内容类型,如文本、图片、视频等。用户可通过提示栏、DALL-E 2生成图像,并可嵌入网页内容。注册后,用户可以方便地创作高质量PPT,支持视频录制和个性化定制。[链接:Tome | Polished & Professional AI Presentations](https://beta.tome.app/)
Tome 是一个AI PPT生成器,能根据用户输入自动生成内容和图片。用户可通过工具栏与AI对话来调整PPT,支持样式定制。优点包括:AI生成内容(支持中英文)、图片生成、多媒体嵌入及多语言输入。缺点:不支持导出下载和模板有限。
这个文本是关于使用Pandas进行数据分析的教程,主要关注会员数据的处理和业务指标的计算。