云场景下运维的核心痛点及解决方案研讨|龙蜥社区系统运维 MeetUp
阿里云系统服务负责人冯富秋主持了主题为《云场景下运维的核心痛点及解决方案研讨》的圆桌讨论,来自清华大学博士,云杉网络研发 VP 向阳,谐云科技 CTO 苌程,乘云数字公司创始人度远,乐维创始人丁振兴,龙蜥社区系统运维 SIG Maintainer 张毅,观测云系统工程师张文杰,擎创科技可观测产品总监何晶,浙江大学城市学院教授李飞参加了讨论,嘉宾就运维的痛点、突破点和价值点三个方向的议题展开了热烈的讨论。
使用 eBPF 帮助应用开发实现零侵扰的可观测性 | 龙蜥社区系统运维MeetUp
从 DeepFlow 的实践经验出发,以业务运维、应用开发的视角分享了一系列典型实战案例。通过他的分享,我们更生动的了解到了 eBPF 作为一项非常底层的内核编程技术,是如何支撑银行分布式核心快速上云,如何让层层网关呵护下的 Serverless 应用快速实现全栈链路追踪,如何帮助 C++ 技术栈的游戏应用解决插桩难的观测痛点,如何为祖传代码遇到的降本增效难题提供解决方案,如何化解公有云服务商和租户之间的工单卡死难题,以及如何结合 Wasm 技术让新一代证券交易系统实现零侵扰的分布式追踪。
eBPF 与网络可观测性研究 | 龙蜥社区系统运维MeetUp
eBPF 在网络可观测上具有安全灵活、实时追踪等优点,通过运行时加载 DataKit 探针能实现对网络流量的实时分析和统计;基于网络协议的分析,能够为链路系统提供系统侧的 Span 补充。最终在观测云统一可观测平台上展示出请求数、响应时间、错误率等关键指标。
云原生转型之路的多系统运维|龙蜥社区系统运维MeetUp
企业面向几百个转型中间态的系统,通过建设统一对象模型,对异源同域的数据进行解析丰富处理,实现多维数据自主关联。算法和机器学习为复杂的体系提供了动态问题感知和预测的能力。在问题发生后基于根因推荐、同源分析等措施快速故障定界并开始应急处置,保障业务的连续性是首要之责,数智化观测为排障和系统调优提供有效的决策能力。
云观测场景下的 Trace 全量存储技术研究 | 龙蜥社区系统运维 MeetUp
乘云数字 DataBuff 产品线架构师狂魔分享了《云观测场景下的 Trace 全量存储技术研究》主题演讲。在分享上提到,DataBuff 正在构建以“ Trace、Metric、Log、Topo、eBPF Flow” 观测五件套为数据原材料的一体化观测平台,Trace 是一体化观测的核心要素,是拓扑驱动现代 AIOps 分析的关键,有着不可替代的地位。当前,业界大多可观测性软件厂商无法解决“Trace 全量存储”的技术难题,大量丢弃客户的交易链数据是普遍现象,在安全合规、故障回溯、算力成本等方面均受到了巨大挑战。乘云数字专门开发了一款 “TraceX 调用链全量存储系统”,面向可观测分析场景、尤其适合大规模交易系统、云原生容器场景,帮助系统实现全量化存储调用链数据。TraceX 能够有效的降低 Tracing 数据的存储成本、提升分析效率,真正达到降本增效的目的。通过 TraceX 辅助一体化观测系统构建应用系统的空间地图,实现故障定位的按图索骥不丢痕,真正解决客户的业务问题。