自然语言处理
包含命名实体识别、文本分类、分词、关系抽取、问答、推理、文本摘要、情感分析、机器翻译等多个领域
求助: 运行模型时报错module 'megatron_util.mpu' has no attribute 'get_model_parallel_rank'
运行ZhipuAI/Multilingual-GLM-Summarization-zh的官方代码范例时,报错AttributeError: MGLMTextSummarizationPipeline: module 'megatron_util.mpu' has no attribute 'get_model_parallel_rank' 环境是基于ModelScope官方docker镜像,尝试了各个版本结果都是一样的。
我们要对齐什么——从人类反馈数据收集过程中分析语言模型的对齐任务类型与对齐目标
在Modelscope活动中,主办方欲通过模型盲测收集并整理一批人类反馈数据。因为曾经使用直接偏好优化(Direct Preference Optimization)作为课程的小论文而对此领域有所了解,本次我在数据的收集过程之外,根据问答与模型的输出,结合论文From Instructions to Intrinsic Human Values A Survey of Alignment Goals for Big Models,具体探究了本次实验过程中的对齐目标。
使用ModelScope社区搭建OCR应用
简介: 本文介绍通过ModelScope来完成光学字符识别(OCR)这一应用,该应用使用两个模型: ● 文本检测(ocr_detection) ● 文本识别(ocr_recognition)
如何向大模型注入知识?达摩院通义对话模型SPACE系列探索
如何将人类先验知识低成本融入到预训练模型中一直是个难题。达摩院对话智能团队提出了一种基于半监督预训练的新训练方式,将对话领域的少量有标数据和海量无标数据一起进行预训练,从而把标注数据中蕴含的知识注入到预训练模型中去,打造了SPACE 1/2/3 系列模型,在11个国际公开对话数据集取得SOTA。
使用宝塔面板部署 AstrBot 与 NapCat 实现 QQ 机器人
本教程详细说明如何在宝塔面板 11 环境下,通过 Docker 容器部署 AstrBot 与 NapCat,实现基于 OneBot v11 协议的 QQ 机器人。内容涵盖环境准备、容器网络配置、WebSocket 连接设置及平台适配器对接等关键步骤。