深度学习编译器在实际应用中面临的主要瓶颈包括易用性、编译开销问题、对用户透明性问题、鲁棒性以及性能问题。其中,易用性涉及与前端框架对接、动态shape和动态计算图支持不足;编译开销问题要求编译开销与性能收益之间的平衡;对用户透明性要求编译器能自动处理用户输入,减少对开发者经验的依赖;鲁棒性则涉及编译成功率和结果正确性;性能问题则要求编译器优化效果能媲美或超越人工优化。
版权声明:本文内容由阿里云实名注册用户自发贡献,版权归原作者所有,阿里云开发者社区不拥有其著作权,亦不承担相应法律责任。具体规则请查看《阿里云开发者社区用户服务协议》和《阿里云开发者社区知识产权保护指引》。如果您发现本社区中有涉嫌抄袭的内容,填写侵权投诉表单进行举报,一经查实,本社区将立刻删除涉嫌侵权内容。