开发者社区 > 大数据与机器学习 > 人工智能平台PAI > 正文

请教下,机器学习PAI哪些模型用户的emb数会不同啊?

请教下,机器学习PAI哪些模型用户的emb数会不同啊?

展开
收起
真的很搞笑 2024-03-26 15:45:39 93 0
1 条回答
写回答
取消 提交回答
  • 将军百战死,壮士十年归!

    在阿里云机器学习PAI平台中,用户在构建模型时,模型中的embedding(emb)数会因模型类型、数据特征以及业务需求的不同而有所差异。embedding通常是将离散的类别特征转换为连续的稠密向量表示,以便于神经网络等模型处理。以下是一些可能导致embedding数不同的场景:

    1. 深度学习推荐系统模型:在构建推荐系统时,用户和物品的特征通常会被转换为embedding向量。不同的推荐系统中,用户和物品的数量不同,对应的embedding矩阵维度也就不同,因此用户的emb数(即用户特征向量维度)会随用户特征空间的大小变化。

    2. 自然语言处理(NLP)模型:在词嵌入、句嵌入等任务中,embedding层的维度是人为设定的,根据词汇表大小和模型需求来确定。例如,Word2Vec、BERT等模型的embedding维度可以自由设置,不同的词汇表大小会导致用户(这里的“用户”可以理解为模型使用者)在训练时使用的emb数不同。

    3. 图神经网络(GNN)模型:在处理图数据时,节点(可以视为用户)的特征也可以通过embedding层转化为低维向量表示,节点数量和embedding维度会影响最终的emb数。

    4. 多模态学习:在处理包含多种类型特征的数据时,如文本、图片、语音等,每种类型的特征都有可能对应不同的emb数,用户在构建模型时根据实际数据和任务需求配置不同模态的emb维度。

    综上所述,阿里云机器学习PAI平台中的模型用户在构建模型时,其emb数会根据不同模型类型、特征工程处理后的特征维度以及模型参数设定等因素而变化。

    2024-03-26 15:49:46
    赞同 4 展开评论 打赏

人工智能平台 PAI(Platform for AI,原机器学习平台PAI)是面向开发者和企业的机器学习/深度学习工程平台,提供包含数据标注、模型构建、模型训练、模型部署、推理优化在内的AI开发全链路服务,内置140+种优化算法,具备丰富的行业场景插件,为用户提供低门槛、高性能的云原生AI工程化能力。

相关产品

  • 人工智能平台 PAI
  • 相关电子书

    更多
    微博机器学习平台架构和实践 立即下载
    机器学习及人机交互实战 立即下载
    大数据与机器学习支撑的个性化大屏 立即下载