开发者社区 > 大数据与机器学习 > 实时计算 Flink > 正文

Flink中我们放到ck里面,在ck做物化视图,订单表更新后,ck的物化视图会增加一条数据,取最后一

Flink中我们放到ck里面,在ck做物化视图,订单表更新后,ck的物化视图会增加一条数据,取最后一条有效的数据,就可以,物化视图的表用replacingmergetree?

展开
收起
真的很搞笑 2023-07-18 21:32:59 255 0
3 条回答
写回答
取消 提交回答
  • 北京阿里云ACE会长

    如果你在 Flink 中使用了 ClickHouse 作为 Sink,那么你可以使用 ClickHouse 的 Materialized Views 来实现物化视图。具体步骤如下:

    在 ClickHouse 中创建物化视图。你可以使用 ClickHouse 的 CREATE MATERIALIZED VIEW 语句来创建物化视图。在创建物化视图时,你需要指定数据源表、物化视图名称、物化视图字段等信息。在定义物化视图时,你可以使用聚合函数(例如 MAX())来计算每个字段的最新值。
    示例代码:

    sql
    Copy
    CREATE MATERIALIZED VIEW my_view
    ENGINE = MergeTree
    ORDER BY (id)
    AS
    SELECT id, field1, field2, MAX(event_time) AS event_time
    FROM my_table
    GROUP BY id, field1, field2
    在 Flink 中使用 ClickHouse 作为 Sink。你可以使用 Flink 的 ClickHouse Sink 将数据写入到 ClickHouse 中。在写入数据时,你需要将数据按照物化视图的定义进行重组,以确保数据能够正确地汇总和聚合。
    示例代码:

    java
    Copy
    DataStream stream = ...;

    stream.addSink(ClickHouseSink.builder()
    .setHost("localhost")
    .setPort(8123)
    .setDatabase("my_database")
    .setTable("my_table")
    .setUsername("my_user")
    .setPassword("my_password")
    .setFlushIntervalMs(1000)
    .setMaxRetries(3)
    .setBatchSize(1000)
    .setSinkFunction(new MySinkFunction())
    .build());
    在 ClickHouse 中查询物化视图。一旦你创建了物化视图并将数据写入到 ClickHouse 中,你可以使用 SELECT 语句来查询物化视图。在查询物化视图时,你可以使用 ORDER BY 子句按照时间戳字段(例如 event_time)进行排序,并使用 LIMIT 子句获取最新的数据记录。
    示例代码:

    sql
    Copy
    SELECT id, field1, field2, event_time
    FROM my_view
    ORDER BY event_time DESC
    LIMIT 1
    总之,使用 ClickHouse 的物化视图可以帮助你快速地汇总和聚合数据,并快速查询最新的数据记录。为了使物化视图能够正确地工作,你需要在 ClickHouse 中定义正确的聚合函

    2023-07-29 21:38:39
    赞同 展开评论 打赏
  • 在 Flink 中,您可以将数据写入 ClickHouse (CK) 并使用 CK 的物化视图来进行数据聚合和查询。对于更新操作,可以通过使用 ReplacingMergeTree 引擎来实现最后一条有效数据的保留。

    以下是一个示例,展示了如何使用 Flink 将数据写入 ClickHouse,并使用物化视图和 ReplacingMergeTree 引擎来保留最后一条有效数据:

    StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
    
    // 创建 ClickHouse 连接器
    ClickHouseSink<Tuple4<String, String, Integer, Timestamp>> clickHouseSink = ClickHouseSink
        .<Tuple4<String, String, Integer, Timestamp>>builder()
        .setHost("your-clickhouse-host")
        .setPort(8123)
        .setDatabase("your-database")
        .setTable("your-table")
        .build();
    
    // 创建输入流
    DataStream<Tuple4<String, String, Integer, Timestamp>> input = env.fromElements(
        Tuple4.of("a", "a", 1, Timestamp.valueOf("2023-01-01 00:00:00")),
        Tuple4.of("a", "a", 1, Timestamp.valueOf("2023-01-01 00:00:02")),
        Tuple4.of("a", "a", 1, Timestamp.valueOf("2023-01-01 00:00:03")),
        Tuple4.of("a", "a", 2, Timestamp.valueOf("2023-01-01 00:00:04"))
    );
    
    // 将数据写入 ClickHouse
    input.addSink(clickHouseSink);
    
    env.execute();
    

    上述代码示例中,我们首先创建了一个 ClickHouse 的连接器,配置要写入的目标 ClickHouse 实例的主机、端口、数据库和表名。然后,我们创建了输入流,其中包含要写入 ClickHouse 的数据。

    最后,我们使用 addSink() 将输入流中的数据写入 ClickHouse。通过配置 CK 的物化视图和 ReplacingMergeTree 引擎,可以实现对订单表的更新操作并保留最后一条有效数据。

    需要注意的是,在实际生产环境中,您可能需要根据具体的业务需求和数据模型来设计并创建适合的 ClickHouse 表、物化视图和引擎,并使用正确的列定义和索引来支持查询和聚合操作。

    2023-07-29 19:21:32
    赞同 展开评论 打赏
  • replacingmergetree 数据更新,为什么会增加一条数据呢,此回答整理自钉群“【③群】Apache Flink China社区”

    2023-07-19 12:23:03
    赞同 展开评论 打赏

实时计算Flink版是阿里云提供的全托管Serverless Flink云服务,基于 Apache Flink 构建的企业级、高性能实时大数据处理系统。提供全托管版 Flink 集群和引擎,提高作业开发运维效率。

相关产品

  • 实时计算 Flink版
  • 相关电子书

    更多
    Apache Flink 案例集(2022版) 立即下载
    ClickHouse在手淘流量分析应用实践Jason Xu 立即下载
    云数据库clickhouse最佳实践 立即下载