开发者社区 > 大数据与机器学习 > 人工智能平台PAI > 正文

安装部署Stable Diffusion的时候遇到困难

我在安装部署Stable Diffusion的时候遇到困难。在执行 python launch.py --listen --lowvram --no-half --skip-torch-cuda-test 报错,好像是 conda 里面pytorch配置有问题,但是我不知道要怎么解决。


附上详细的错误信息:

Python 3.10.6 (main, Oct 24 2022, 16:07:47) [GCC 11.2.0]
Commit hash: 0cc0ee1bcb4c24a8c9715f66cede06601bfc00c8
Cloning Stable Diffusion into repositories/stable-diffusion-stability-ai...
Cloning Taming Transformers into repositories/taming-transformers...
Cloning K-diffusion into repositories/k-diffusion...
Cloning CodeFormer into repositories/CodeFormer...
Cloning BLIP into repositories/BLIP...
Installing requirements for CodeFormer
Installing requirements for Web UI
Launching Web UI with arguments: --listen --lowvram --no-half --ckpt /root/models/Stable-diffusion/v1-5-pruned-emaonly.safetensors --lora-dir /root/models/Lora
/root/.conda/envs/aigc/lib/python3.10/site-packages/torchvision/io/image.py:13: UserWarning: Failed to load image Python extension: '/root/.conda/envs/aigc/lib/python3.10/site-packages/torchvision/image.so: undefined symbol: _ZN5torch3jit17parseSchemaOrNameERKSs'If you don't plan on using image functionality from `torchvision.io`, you can ignore this warning. Otherwise, there might be something wrong with your environment. Did you have `libjpeg` or `libpng` installed before building `torchvision` from source?
  warn(
/root/.conda/envs/aigc/lib/python3.10/site-packages/torchvision/transforms/functional_tensor.py:5: UserWarning: The torchvision.transforms.functional_tensor module is deprecated in 0.15 and will be **removed in 0.17**. Please don't rely on it. You probably just need to use APIs in torchvision.transforms.functional or in torchvision.transforms.v2.functional.
  warnings.warn(
Warning: caught exception 'Torch not compiled with CUDA enabled', memory monitor disabled
Traceback (most recent call last):
  File "/root/stable-diffusion-webui/launch.py", line 361, in <module>
    start()
  File "/root/stable-diffusion-webui/launch.py", line 352, in start
    import webui
  File "/root/stable-diffusion-webui/webui.py", line 15, in <module>
    from modules import import_hook, errors, extra_networks, ui_extra_networks_checkpoints
  File "/root/stable-diffusion-webui/modules/ui_extra_networks_checkpoints.py", line 6, in <module>
    from modules import shared, ui_extra_networks, sd_models
  File "/root/stable-diffusion-webui/modules/sd_models.py", line 17, in <module>
    from modules.sd_hijack_inpainting import do_inpainting_hijack
  File "/root/stable-diffusion-webui/modules/sd_hijack_inpainting.py", line 7, in <module>
    import ldm.models.diffusion.ddpm
  File "/root/stable-diffusion-webui/repositories/stable-diffusion-stability-ai/ldm/models/diffusion/ddpm.py", line 12, in <module>
    import pytorch_lightning as pl
  File "/root/.conda/envs/aigc/lib/python3.10/site-packages/pytorch_lightning/__init__.py", line 34, in <module>
    from pytorch_lightning.callbacks import Callback  # noqa: E402
  File "/root/.conda/envs/aigc/lib/python3.10/site-packages/pytorch_lightning/callbacks/__init__.py", line 14, in <module>
    from pytorch_lightning.callbacks.callback import Callback
  File "/root/.conda/envs/aigc/lib/python3.10/site-packages/pytorch_lightning/callbacks/callback.py", line 25, in <module>
    from pytorch_lightning.utilities.types import STEP_OUTPUT
  File "/root/.conda/envs/aigc/lib/python3.10/site-packages/pytorch_lightning/utilities/types.py", line 28, in <module>
    from torchmetrics import Metric
  File "/root/.conda/envs/aigc/lib/python3.10/site-packages/torchmetrics/__init__.py", line 14, in <module>
    from torchmetrics import functional  # noqa: E402
  File "/root/.conda/envs/aigc/lib/python3.10/site-packages/torchmetrics/functional/__init__.py", line 14, in <module>
    from torchmetrics.functional.audio._deprecated import _permutation_invariant_training as permutation_invariant_training
  File "/root/.conda/envs/aigc/lib/python3.10/site-packages/torchmetrics/functional/audio/__init__.py", line 14, in <module>
    from torchmetrics.functional.audio.pit import permutation_invariant_training, pit_permutate
  File "/root/.conda/envs/aigc/lib/python3.10/site-packages/torchmetrics/functional/audio/pit.py", line 23, in <module>
    from torchmetrics.utilities import rank_zero_warn
  File "/root/.conda/envs/aigc/lib/python3.10/site-packages/torchmetrics/utilities/__init__.py", line 14, in <module>
    from torchmetrics.utilities.checks import check_forward_full_state_property
  File "/root/.conda/envs/aigc/lib/python3.10/site-packages/torchmetrics/utilities/checks.py", line 25, in <module>
    from torchmetrics.metric import Metric
  File "/root/.conda/envs/aigc/lib/python3.10/site-packages/torchmetrics/metric.py", line 30, in <module>
    from torchmetrics.utilities.data import (
  File "/root/.conda/envs/aigc/lib/python3.10/site-packages/torchmetrics/utilities/data.py", line 22, in <module>
    from torchmetrics.utilities.imports import _TORCH_GREATER_EQUAL_1_12, _XLA_AVAILABLE
  File "/root/.conda/envs/aigc/lib/python3.10/site-packages/torchmetrics/utilities/imports.py", line 48, in <module>
    _TORCHAUDIO_GREATER_EQUAL_0_10: Optional[bool] = compare_version("torchaudio", operator.ge, "0.10.0")
  File "/root/.conda/envs/aigc/lib/python3.10/site-packages/lightning_utilities/core/imports.py", line 73, in compare_version
    pkg = importlib.import_module(package)
  File "/root/.conda/envs/aigc/lib/python3.10/importlib/__init__.py", line 126, in import_module
    return _bootstrap._gcd_import(name[level:], package, level)
  File "/root/.conda/envs/aigc/lib/python3.10/site-packages/torchaudio/__init__.py", line 1, in <module>
    from torchaudio import (  # noqa: F401
  File "/root/.conda/envs/aigc/lib/python3.10/site-packages/torchaudio/_extension/__init__.py", line 43, in <module>
    _load_lib("libtorchaudio")
  File "/root/.conda/envs/aigc/lib/python3.10/site-packages/torchaudio/_extension/utils.py", line 61, in _load_lib
    torch.ops.load_library(path)
  File "/root/.conda/envs/aigc/lib/python3.10/site-packages/torch/_ops.py", line 643, in load_library
    ctypes.CDLL(path)
  File "/root/.conda/envs/aigc/lib/python3.10/ctypes/__init__.py", line 374, in __init__
    self._handle = _dlopen(self._name, mode)
OSError: /root/.conda/envs/aigc/lib/python3.10/site-packages/torchaudio/lib/libtorchaudio.so: undefined symbol: _ZNK5torch8autograd4Node4nameEv
(aigc) [root@iZuf61kljas3cjo5gb9jauZ stable-diffusion-webui]# python launch.py --listen --lowvram --no-half 
Python 3.10.6 (main, Oct 24 2022, 16:07:47) [GCC 11.2.0]
Commit hash: 0cc0ee1bcb4c24a8c9715f66cede06601bfc00c8
Traceback (most recent call last):
  File "/root/stable-diffusion-webui/launch.py", line 360, in <module>
    prepare_environment()
  File "/root/stable-diffusion-webui/launch.py", line 272, in prepare_environment
    run_python("import torch; assert torch.cuda.is_available(), 'Torch is not able to use GPU; add --skip-torch-cuda-test to COMMANDLINE_ARGS variable to disable this check'")
  File "/root/stable-diffusion-webui/launch.py", line 129, in run_python
    return run(f'"{python}" -c "{code}"', desc, errdesc)
  File "/root/stable-diffusion-webui/launch.py", line 105, in run
    raise RuntimeError(message)
RuntimeError: Error running command.
Command: "/root/.conda/envs/aigc/bin/python" -c "import torch; assert torch.cuda.is_available(), 'Torch is not able to use GPU; add --skip-torch-cuda-test to COMMANDLINE_ARGS variable to disable this check'"
Error code: 1
stdout: <empty>
stderr: Traceback (most recent call last):
  File "<string>", line 1, in <module>
AssertionError: Torch is not able to use GPU; add --skip-torch-cuda-test to COMMANDLINE_ARGS variable to disable this check


(aigc) [root@iZuf61kljas3cjo5gb9jauZ stable-diffusion-webui]# python launch.py --listen --lowvram --no-half --skip-torch-cuda-test
Python 3.10.6 (main, Oct 24 2022, 16:07:47) [GCC 11.2.0]
Commit hash: 0cc0ee1bcb4c24a8c9715f66cede06601bfc00c8
Installing requirements for Web UI
Launching Web UI with arguments: --listen --lowvram --no-half --ckpt /root/models/Stable-diffusion/v1-5-pruned-emaonly.safetensors --lora-dir /root/models/Lora
/root/.conda/envs/aigc/lib/python3.10/site-packages/torchvision/io/image.py:13: UserWarning: Failed to load image Python extension: '/root/.conda/envs/aigc/lib/python3.10/site-packages/torchvision/image.so: undefined symbol: _ZN5torch3jit17parseSchemaOrNameERKSs'If you don't plan on using image functionality from `torchvision.io`, you can ignore this warning. Otherwise, there might be something wrong with your environment. Did you have `libjpeg` or `libpng` installed before building `torchvision` from source?
  warn(
/root/.conda/envs/aigc/lib/python3.10/site-packages/torchvision/transforms/functional_tensor.py:5: UserWarning: The torchvision.transforms.functional_tensor module is deprecated in 0.15 and will be **removed in 0.17**. Please don't rely on it. You probably just need to use APIs in torchvision.transforms.functional or in torchvision.transforms.v2.functional.
  warnings.warn(
Warning: caught exception 'Torch not compiled with CUDA enabled', memory monitor disabled
Traceback (most recent call last):
  File "/root/stable-diffusion-webui/launch.py", line 361, in <module>
    start()
  File "/root/stable-diffusion-webui/launch.py", line 352, in start
    import webui
  File "/root/stable-diffusion-webui/webui.py", line 15, in <module>
    from modules import import_hook, errors, extra_networks, ui_extra_networks_checkpoints
  File "/root/stable-diffusion-webui/modules/ui_extra_networks_checkpoints.py", line 6, in <module>
    from modules import shared, ui_extra_networks, sd_models
  File "/root/stable-diffusion-webui/modules/sd_models.py", line 17, in <module>
    from modules.sd_hijack_inpainting import do_inpainting_hijack
  File "/root/stable-diffusion-webui/modules/sd_hijack_inpainting.py", line 7, in <module>
    import ldm.models.diffusion.ddpm
  File "/root/stable-diffusion-webui/repositories/stable-diffusion-stability-ai/ldm/models/diffusion/ddpm.py", line 12, in <module>
    import pytorch_lightning as pl
  File "/root/.conda/envs/aigc/lib/python3.10/site-packages/pytorch_lightning/__init__.py", line 34, in <module>
    from pytorch_lightning.callbacks import Callback  # noqa: E402
  File "/root/.conda/envs/aigc/lib/python3.10/site-packages/pytorch_lightning/callbacks/__init__.py", line 14, in <module>
    from pytorch_lightning.callbacks.callback import Callback
  File "/root/.conda/envs/aigc/lib/python3.10/site-packages/pytorch_lightning/callbacks/callback.py", line 25, in <module>
    from pytorch_lightning.utilities.types import STEP_OUTPUT
  File "/root/.conda/envs/aigc/lib/python3.10/site-packages/pytorch_lightning/utilities/types.py", line 28, in <module>
    from torchmetrics import Metric
  File "/root/.conda/envs/aigc/lib/python3.10/site-packages/torchmetrics/__init__.py", line 14, in <module>
    from torchmetrics import functional  # noqa: E402
  File "/root/.conda/envs/aigc/lib/python3.10/site-packages/torchmetrics/functional/__init__.py", line 14, in <module>
    from torchmetrics.functional.audio._deprecated import _permutation_invariant_training as permutation_invariant_training
  File "/root/.conda/envs/aigc/lib/python3.10/site-packages/torchmetrics/functional/audio/__init__.py", line 14, in <module>
    from torchmetrics.functional.audio.pit import permutation_invariant_training, pit_permutate
  File "/root/.conda/envs/aigc/lib/python3.10/site-packages/torchmetrics/functional/audio/pit.py", line 23, in <module>
    from torchmetrics.utilities import rank_zero_warn
  File "/root/.conda/envs/aigc/lib/python3.10/site-packages/torchmetrics/utilities/__init__.py", line 14, in <module>
    from torchmetrics.utilities.checks import check_forward_full_state_property
  File "/root/.conda/envs/aigc/lib/python3.10/site-packages/torchmetrics/utilities/checks.py", line 25, in <module>
    from torchmetrics.metric import Metric
  File "/root/.conda/envs/aigc/lib/python3.10/site-packages/torchmetrics/metric.py", line 30, in <module>
    from torchmetrics.utilities.data import (
  File "/root/.conda/envs/aigc/lib/python3.10/site-packages/torchmetrics/utilities/data.py", line 22, in <module>
    from torchmetrics.utilities.imports import _TORCH_GREATER_EQUAL_1_12, _XLA_AVAILABLE
  File "/root/.conda/envs/aigc/lib/python3.10/site-packages/torchmetrics/utilities/imports.py", line 48, in <module>
    _TORCHAUDIO_GREATER_EQUAL_0_10: Optional[bool] = compare_version("torchaudio", operator.ge, "0.10.0")
  File "/root/.conda/envs/aigc/lib/python3.10/site-packages/lightning_utilities/core/imports.py", line 73, in compare_version
    pkg = importlib.import_module(package)
  File "/root/.conda/envs/aigc/lib/python3.10/importlib/__init__.py", line 126, in import_module
    return _bootstrap._gcd_import(name[level:], package, level)
  File "/root/.conda/envs/aigc/lib/python3.10/site-packages/torchaudio/__init__.py", line 1, in <module>
    from torchaudio import (  # noqa: F401
  File "/root/.conda/envs/aigc/lib/python3.10/site-packages/torchaudio/_extension/__init__.py", line 43, in <module>
    _load_lib("libtorchaudio")
  File "/root/.conda/envs/aigc/lib/python3.10/site-packages/torchaudio/_extension/utils.py", line 61, in _load_lib
    torch.ops.load_library(path)
  File "/root/.conda/envs/aigc/lib/python3.10/site-packages/torch/_ops.py", line 643, in load_library
    ctypes.CDLL(path)
  File "/root/.conda/envs/aigc/lib/python3.10/ctypes/__init__.py", line 374, in __init__
    self._handle = _dlopen(self._name, mode)
OSError: /root/.conda/envs/aigc/lib/python3.10/site-packages/torchaudio/lib/libtorchaudio.so: undefined symbol: _ZNK5torch8autograd4Node4nameEv

展开
收起
骆同学 2023-07-13 16:41:01 1471 3
7 条回答
写回答
取消 提交回答
  • 根据您提供的信息,可能是由于conda环境中的PyTorch版本与Stable Diffusion所需的版本不兼容导致的。您可以尝试以下方法解决问题:

    1. 创建一个新的conda环境,并在其中安装Stable Diffusion所需的依赖项。这可以确保您的环境中没有其他版本的库干扰。您可以使用以下命令创建新环境并激活它:
    conda create -n stable_diffusion python=3.8
    conda activate stable_diffusion
    
    1. 在激活的环境中,尝试使用以下命令安装Stable Diffusion及其依赖项:
    pip install -r requirements.txt
    

    如果仍然遇到问题,请检查requirements.txt文件中列出的所有依赖项是否与您的conda环境中的其他库兼容。如果不兼容,您可能需要手动更新或降级这些依赖项的版本。

    1. 如果问题仍然存在,您可以尝试在conda中卸载当前的PyTorch版本,然后重新安装一个与Stable Diffusion兼容的版本。首先,使用以下命令卸载当前的PyTorch版本:
    conda uninstall pytorch torchvision torchaudio cudatoolkit=10.2 -c pytorch
    

    然后,根据您的系统和CUDA版本,从PyTorch官方网站获取适当的安装命令。例如,对于Windows系统和CUDA 10.2,您可以使用以下命令安装PyTorch:

    conda install pytorch torchvision torchaudio cudatoolkit=10.2 -c pytorch -c conda-forge
    

    希望这些建议能帮助您解决问题。如果您还有其他问题,请随时提问。

    2023-08-23 07:53:15
    赞同 1 展开评论 打赏
  • 重装torchaudio
    先卸载
    conda uninstall torchaudio
    再重装
    conda install torchaudio

    2023-07-16 13:38:21
    赞同 展开评论 打赏
  • 天下风云出我辈,一入江湖岁月催,皇图霸业谈笑中,不胜人生一场醉。

    可能是由于您的conda环境中的PyTorch版本和CUDA支持存在问题导致的。为了解决这个问题,您可以尝试以下几个步骤:

    确保您的conda环境中已经安装了最新版本的PyTorch和CUDA。您可以通过在conda命令行中执行以下命令来检查您的PyTorch和CUDA版本:

    conda list | grep torch
    conda list | grep cuda
    

    如果您的PyTorch和CUDA版本不是最新的,您可以通过以下命令来更新它们:

    conda install pytorch torchvision cudatoolkit=11.0
    

    如果您已经安装了最新版本的PyTorch和CUDA,但是仍然遇到问题,您可以尝试重新编译PyTorch。您可以通过以下命令来编译PyTorch:

    torchvision.utils.build torchvision()
    

    如果您仍然无法解决问题,您可以尝试重新安装PyTorch和CUDA,并确保它们的版本和环境变量都正确配置。

    2023-07-14 09:13:46
    赞同 展开评论 打赏
  • 值得去的地方都没有捷径

    在安装和部署 Stable Diffusion 时遇到问题可能是由于 PyTorch 配置或环境问题导致的。下面是一些可能的解决方案:

    1. 确保已经正确安装了 conda 和 PyTorch。可以通过运行 conda list 命令来查看已安装的包列表,确认 PyTorch 是否已经正确安装。

    2. 如果你尚未安装 PyTorch 或者想重新安装,可以尝试使用 conda 来安装。可以使用以下命令创建一个新的 conda 环境,并在环境中安装 PyTorch:

      conda create -n myenv python=3.7
      conda activate myenv
      conda install pytorch torchvision torchaudio cpuonly -c pytorch
      

      请注意,上述命令假定你希望安装 CPU 版本的 PyTorch。如果你需要 GPU 版本,请根据你的 GPU 类型和 CUDA 版本选择合适的安装命令。

    3. 如果你已经正确安装了 PyTorch,但仍然遇到问题,可以尝试更新 PyTorch 到最新版本。使用以下命令更新 PyTorch:

      conda update pytorch torchvision torchaudio -c pytorch
      
    4. 如果问题仍然存在,可能是由于其他依赖项或环境配置问题导致的。你可以尝试查看错误消息中的详细信息,并根据错误信息进一步调查和解决。

    请注意,以上解决方案提供了一些常见的解决方法,但具体情况可能因操作系统、环境和其他因素而有所不同。如果问题仍然存在,我建议你参考相关文档、社区论坛或与开发者进行沟通,以获取更具体的帮助和支持。

    2023-07-13 19:47:09
    赞同 展开评论 打赏
  • 在安装和部署 Stable Diffusion 时遇到问题可能有多种原因。关于您提到的 conda 和 PyTorch 配置问题,以下是一些常见的解决方法:

    1. 确认环境:确保您使用的环境符合 Stable Diffusion 的要求。首先,请确认您已经安装了适当版本的 Python 和 conda,并且配置了正确的环境变量。

    2. 更新 conda:尝试更新 conda 到最新版本,可以使用以下命令:

      conda update conda
      
    3. 清理环境:如果之前安装过其他版本的 PyTorch 或相关依赖项,可能会导致冲突。您可以尝试卸载现有的 PyTorch 及其依赖项,并重新安装 Stable Diffusion 所需的依赖项。

    4. 创建虚拟环境:为了避免与现有环境的冲突,您可以创建一个新的虚拟环境,并在其中安装 Stable Diffusion 所需的依赖项。可以使用以下命令创建虚拟环境:

      conda create -n stable-diffusion python=3.8
      
    5. 安装 PyTorch:确保您安装了兼容版本的 PyTorch。根据您的系统和硬件配置,可以从 PyTorch 的官方网站或 conda 命令进行安装。例如,对于 CPU 版本可以使用以下命令:

      conda install pytorch cpuonly -c pytorch
      
    6. 依赖项解决:在安装 Stable Diffusion 之前,请确保已经安装了它所需的所有依赖项。您可以查看 Stable Diffusion 的文档或 README 文件,找到相关依赖项的列表,并逐个进行安装。

    2023-07-13 19:05:41
    赞同 展开评论 打赏
  • 面对过去,不要迷离;面对未来,不必彷徨;活在今天,你只要把自己完全展示给别人看。

    在安装部署 Stable Diffusion 时遇到 conda 中 PyTorch 配置的问题,下面是一些可能的解决方法:

    1. 更新 conda:首先,确保您正在使用最新版本的 conda。在命令行中运行以下命令可以更新 conda:

      conda update -n base -c defaults conda
      
    2. 创建新的 conda 环境:尝试创建一个新的 conda 环境,并在该环境中安装 Stable Diffusion 和相应的依赖项。您可以使用以下命令创建新环境:

      conda create -n sd-env python=3.7
      conda activate sd-env
      
    3. 安装 PyTorch:在新的 conda 环境中,尝试使用 conda 或 pip 安装正确版本的 PyTorch。例如,使用以下命令安装 PyTorch CPU 版本:

      conda install pytorch cpuonly -c pytorch
      
    4. 检查 CUDA 配置:如果您的系统具有 NVIDIA GPU 并要使用 GPU 加速,确保已正确配置 CUDA。请确认您的 GPU 驱动程序已正确安装,并且与所安装的 PyTorch 版本兼容。

    5. 运行脚本:在完成以上步骤后,再次运行 python launch.py --listen --lowvram --no-half --skip-torch-cuda-test 命令,看是否还会出现错误。

    2023-07-13 19:00:12
    赞同 展开评论 打赏
  • 北京阿里云ACE会长

    如果在安装部署 Stable Diffusion 时遇到了问题,可能是由于 pytorch 配置出现了问题。以下是一些可能的解决步骤:

    检查 pytorch 是否安装成功:在执行 python launch.py 命令之前,请确保已经成功安装了 pytorch,并且 pytorch 版本与 Stable Diffusion 要求的版本一致。可以尝试在终端中输入 python 进入 Python 解释器,然后输入 import torch,查看是否有报错提示。

    确认 conda 环境正确:在执行 python launch.py 命令之前,需要确保当前的 conda 环境已经正确激活。可以尝试在终端中输入 conda activate your_env,将 your_env 替换为正确的 conda 环境名称,查看是否激活成功。

    更新 pytorch 和 torchvision:如果已经安装了 pytorch 和 torchvision,可以尝试更新这两个包到最新版本,以确保与 Stable Diffusion 兼容。可以使用 conda update pytorch torchvision 命令进行更新。

    检查 CUDA 版本:如果您的系统上安装了 CUDA,需要确保 CUDA 版本与 Stable Diffusion 支持的 CUDA 版本一致。可以尝试在终端中输入 nvcc --version,查看 CUDA 版本信息。

    检查 GPU 驱动程序:如果您的系统上安装了 GPU 驱动程序,请确保驱动程序版本与 Stable Diffusion 支持的版本一致。可以尝试在终端中输入 nvidia-smi,查看 GPU 驱动程序版本信息

    2023-07-13 17:02:13
    赞同 展开评论 打赏
滑动查看更多

人工智能平台 PAI(Platform for AI,原机器学习平台PAI)是面向开发者和企业的机器学习/深度学习工程平台,提供包含数据标注、模型构建、模型训练、模型部署、推理优化在内的AI开发全链路服务,内置140+种优化算法,具备丰富的行业场景插件,为用户提供低门槛、高性能的云原生AI工程化能力。

热门讨论

热门文章

相关电子书

更多
低代码开发师(初级)实战教程 立即下载
冬季实战营第三期:MySQL数据库进阶实战 立即下载
阿里巴巴DevOps 最佳实践手册 立即下载