限制条件是 group key 里面至少有一个 key 是可枚举的,而且枚举值必须是静态的,能够明确写在过 滤条件里。另外每个维度下的 distinct key 得有重合才能达到节约状态的效果。如果需要统计每个省份的 UV,基本上可以认为不同省份的访客是没有交集的,这个时候复用 distinct key 是没有收益的。另外在窗口聚合的 时候,窗口函数必须具有行语义,不可以是集合语义。对于行语义的窗口,当前这个数据属于哪个窗口取决 于数据本身;但是对于集合语义的窗口,当前这条数据属于哪个窗口,不仅取决于数据本身,还取决于这个 窗口收到过的历史数据集合。这个优化调整聚合算子的 group key,会影响每个窗口收到的数据集合,所以不适用于集合语义的窗口。
以上内容摘自《Apache Flink 案例集(2022版)》电子书,点击https://developer.aliyun.com/ebook/download/7718 可下载完整版
版权声明:本文内容由阿里云实名注册用户自发贡献,版权归原作者所有,阿里云开发者社区不拥有其著作权,亦不承担相应法律责任。具体规则请查看《阿里云开发者社区用户服务协议》和《阿里云开发者社区知识产权保护指引》。如果您发现本社区中有涉嫌抄袭的内容,填写侵权投诉表单进行举报,一经查实,本社区将立刻删除涉嫌侵权内容。
实时计算Flink版是阿里云提供的全托管Serverless Flink云服务,基于 Apache Flink 构建的企业级、高性能实时大数据处理系统。提供全托管版 Flink 集群和引擎,提高作业开发运维效率。