Lakehouse如何以开放的存储格式达到高效的查询性能?
1)高速缓存;Lakehouse可以使用与数据仓库相同的优化数据结构对其进行缓存提高查询性能。
2)建立辅助数据结构;即使数据是用Parquet格式存储的,也可以建立很多额外的数据结构来加快查询,同时对这些额外的数据进行事务性的维护。
3)数据布局;
4)动态文件剪枝(Dynamic File Pruning, DFP);
5)优化组合;综合使用以上优化技术协同工作,让Lakehouse中的数据读取都在高速缓存中进行,并且通过数据布局优化,建立辅助数据结构减少对非缓存数据读取的I/0,实现了Lakehouse引擎可以提供与数据仓库类似的查询性能。
以上内容摘自《Databricks数据洞悉》电子书,点击https://developer.aliyun.com/topic/download?id=8545可下载完整版
版权声明:本文内容由阿里云实名注册用户自发贡献,版权归原作者所有,阿里云开发者社区不拥有其著作权,亦不承担相应法律责任。具体规则请查看《阿里云开发者社区用户服务协议》和《阿里云开发者社区知识产权保护指引》。如果您发现本社区中有涉嫌抄袭的内容,填写侵权投诉表单进行举报,一经查实,本社区将立刻删除涉嫌侵权内容。
阿里云EMR是云原生开源大数据平台,为客户提供简单易集成的Hadoop、Hive、Spark、Flink、Presto、ClickHouse、StarRocks、Delta、Hudi等开源大数据计算和存储引擎,计算资源可以根据业务的需要调整。EMR可以部署在阿里云公有云的ECS和ACK平台。