spark-submit 提交代码,执行 new SparkContext(),在 SparkContext 里构造 DAGScheduler 和 TaskScheduler。
TaskScheduler 会通过后台的一个进程,连接 Master,向 Master 注册 Application。
Master 接收到 Application 请求后,会使用相应的资源调度算法,在 Worker 上为这个 Application 启动多个 Executer。
Executor 启动后,会自己反向注册到 TaskScheduler 中。所有 Executor 都注册到 Driver 上之后,SparkContext 结束初始化,接下来往下执行我们自己的代码。
每执行到一个 Action,就会创建一个 Job。Job 会提交给 DAGScheduler。
DAGScheduler 会将 Job划分为多个 stage,然后每个 stage 创建一个 TaskSet。
TaskScheduler 会把每一个 TaskSet 里的 Task,提交到 Executor 上执行。
Executor 上有线程池,每接收到一个 Task,就用 TaskRunner 封装,然后从线程池里取出一个线程执行这个 task。(TaskRunner 将我们编写的代码,拷贝,反序列化,执行 Task,每个 Task 执行 RDD 里的一个 partition)
版权声明:本文内容由阿里云实名注册用户自发贡献,版权归原作者所有,阿里云开发者社区不拥有其著作权,亦不承担相应法律责任。具体规则请查看《阿里云开发者社区用户服务协议》和《阿里云开发者社区知识产权保护指引》。如果您发现本社区中有涉嫌抄袭的内容,填写侵权投诉表单进行举报,一经查实,本社区将立刻删除涉嫌侵权内容。