对于异步阶段来说,tm 端主要将 state 备份到持久化存储上,对于非 RocksDBBackend 来说,主要瓶颈来自于网络,这个阶段可以考虑观察网络的 metric,或者 对应机器上能够观察到网络流量的情况(比如 iftop)。 对于 RocksDB 来说,则需要从本地读取文件,写入到远程的持久化存储上,所以不仅需要考虑网络的瓶颈,还需要考虑本地磁盘的性能。另外对于 RocksDBBackend 来说,如果觉得网络流量不是瓶颈,但是上传比较慢的话,还可以尝试考 虑开启多线程上传功能.
版权声明:本文内容由阿里云实名注册用户自发贡献,版权归原作者所有,阿里云开发者社区不拥有其著作权,亦不承担相应法律责任。具体规则请查看《阿里云开发者社区用户服务协议》和《阿里云开发者社区知识产权保护指引》。如果您发现本社区中有涉嫌抄袭的内容,填写侵权投诉表单进行举报,一经查实,本社区将立刻删除涉嫌侵权内容。
实时计算Flink版是阿里云提供的全托管Serverless Flink云服务,基于 Apache Flink 构建的企业级、高性能实时大数据处理系统。提供全托管版 Flink 集群和引擎,提高作业开发运维效率。