迁移Zabbix数据库到TokuDB

本文涉及的产品
RDS MySQL DuckDB 分析主实例,集群系列 4核8GB
简介: 迁移Zabbix数据库到TokuDB
  • 背景介绍

线上的Zabbix数据库有几个大表数据量疯狂增长,单表已经超过500G,而且在早期也没做成分区表,后期维护非常麻烦。比如,想删除过期的历史数据,在原先的模式下,history、history_uint等几个大表是用 (itemid, clock) 两个字段做的联合主键,只用 clock 字段检索效率非常差。


TokuDB 是一个高性能、支持事务处理的 MySQL 和 MariaDB 的存储引擎。TokuDB 的主要特点是高压缩比,高 INSERT 性能,支持大多数在线修改索引、添加字段,特别适合像 Zabbix 这种高 INSERT,少 UPDATE 的应用场景。

  • 迁移准备

欲使用 TokuDB 引擎,服务层可以选择和 MariaDB ,也可以选择 Percona ,鉴于我以往使用 Percona 的较多,因此本次也选择使用 Percona 版本集成 TokuDB 引擎。


当前最新版下载地址:http://www.percona.com/redir/downloads/Percona-Server-5.6/LATEST/binary/tarball/Percona-Server-5.6.17-rel66.0-608.TokuDB.Linux.x86_64.tar.gz


按照正常方式安装即可,配置文件中增加3行:

malloc-lib= /usr/local/mysql/lib/mysql/libjemalloc.so
plugin-dir = /usr/local/mysql/lib/mysql/plugin/
plugin-load=ha_tokudb.so


如果不加载jemalloc,启动时就会有类似下面的报错:

[ERROR] TokuDB not initialized because jemalloc is not loaded
[ERROR] Plugin 'TokuDB' init function returned error.
[ERROR] Plugin 'TokuDB' registration as a STORAGE ENGINE failed.


并且,修改内核配置,禁用transparent_hugepage,不关闭的话可能会导致TokuDB内存泄露(建议写到 /etc/rc.local 中,重启后仍可生效):

echo never > /sys/kernel/mm/redhat_transparent_hugepage/defrag
echo never > /sys/kernel/mm/redhat_transparent_hugepage/enabled
echo never > /sys/kernel/mm/transparent_hugepage/enabled
echo never > /sys/kernel/mm/transparent_hugepage/defrag


如果不修改内核设置,启动时就会有类似下面的报错:

Transparent huge pages are enabled, according to /sys/kernel/mm/redhat_transparent_hugepage/enabled
Transparent huge pages are enabled, according to /sys/kernel/mm/transparent_hugepage/enabled
[ERROR] TokuDB will not run with transparent huge pages enabled.
[ERROR] Please disable them to continue.
[ERROR] (echo never > /sys/kernel/mm/transparent_hugepage/enabled)
[ERROR]
[ERROR] ************************************************************
[ERROR] Plugin 'TokuDB' init function returned error.
[ERROR] Plugin 'TokuDB' registration as a STORAGE ENGINE failed.


然后,初始化数据库,启动即可。


我的服务器配置:E5-2620 * 2,64G内存,1T可用磁盘空间(建议datadir所在分区设置为xfs文件系统),下面是我使用的相关选项,仅供参考:

#
# my.cnf
#
# Percona-5.6.17, TokuDB-7.1.6,用于Zabbix数据库参考配置
# 我的服务器配置:E5-2620 * 2,64G内存,1T可用磁盘空间(建议datadir所在分区设置为xfs文件系统)
# TokuDB版本:Percona-5.6.17, TokuDB-7.1.6(插件加载模式)
#
# created by yejr(http://imysql.com), 2014/06/24
#

[client]
port = 3306
socket = mysql.sock
#default-character-set=utf8

[mysql]
prompt="\\u@\\h \\D \\R:\\m:\\s [\\d]>
#pager="less -i -n -S"
tee=/home/mysql/query.log
no-auto-rehash

[mysqld]
open_files_limit = 8192
max_connect_errors = 100000

#buffer & cache
table_open_cache = 2048
table_definition_cache = 2048
max_heap_table_size = 96M
sort_buffer_size = 2M
join_buffer_size = 2M
tmp_table_size = 96M
key_buffer_size = 8M
read_buffer_size = 2M
read_rnd_buffer_size = 16M
bulk_insert_buffer_size = 32M

#innodb
#只有部分小表保留InnoDB引擎,因此InnoDB Buffer Pool设置为1G基本上够了
innodb_buffer_pool_size = 1G
innodb_buffer_pool_instances = 1
innodb_data_file_path = ibdata1:1G:autoextend
innodb_flush_log_at_trx_commit = 1
innodb_log_buffer_size = 64M
innodb_log_file_size = 256M
innodb_log_files_in_group = 2
innodb_file_per_table = 1
innodb_status_file = 1
transaction_isolation = READ-COMMITTED
innodb_flush_method = O_DIRECT

#tokudb
malloc-lib= /usr/local/mysql/lib/mysql/libjemalloc.so
plugin-dir = /usr/local/mysql/lib/mysql/plugin/
plugin-load=ha_tokudb.so

#把TokuDB datadir以及logdir和MySQL的datadir分开,美观点,也可以不分开,注释掉本行以及下面2行即可
tokudb-data-dir = /data/mysql/zabbix_3306/tokudbData
tokudb-log-dir = /data/mysql/zabbix_3306/tokudbLog

#TokuDB的行模式,建议用 FAST 就足够了,如果磁盘空间很紧张,建议用 SMALL
#tokudb_row_format = tokudb_small
tokudb_row_format = tokudb_fast
tokudb_cache_size = 44G

#其他大部分配置其实可以不用修改的,只需要几个关键配置即可
tokudb_commit_sync = 0
tokudb_directio = 1
tokudb_read_block_size = 128K
tokudb_read_buf_size = 128K

  • 迁移过程

建议在一台全新的服务器上启动Percona(TokuDB)实例进程,初始化新的Zabbix数据库,直接将大表转成TokuDB引擎,并且开启分区模式。这样相比直接在线ALTER TABLE或者INSERT…SELECT导入数据都要来的快一些(我简单测试了下,差不多能快2-3倍,甚至更高)。


在做数据迁移时,建议在目标服务器上做库表结构初始化,在源服务器上采用分段方式导出,一个表导出多个备份文件,方便在恢复时可以并发导入。在导入时,并且记得临时关闭 binlog,最起码设置sync_binlog = 0 以及tokudb_commit_sync = 0,以提高导入速度。采用 mysqldump增加 -w 参数即可实现根据条件分段导出,具体可参考上一次的文章:[MySQLFAQ]系列— mysqldump-w参数备份,或者是用MySQLDumper


需要用到外键的表继续保留InnoDB引擎,其他表都可以转成TokuDB,history_str、trends、trends_uint、history、history_uint等几个大表是一定要转成TokuDB的,events由于需要用到外键,所以继续保留InnoDB引擎。


我将表结构初始化SQL脚本提供下载了,一份是没有采用分区表的,一份是采用分区表的,大家可自行选择。一般如果记录数超过1亿,就建议使用分区表,根据时间字段(clock)分区,方便后期维护,例如删除过期历史数据什么的。

  • 收尾

剩下的基本没啥可做的了,就是观察下运行状态,是否还有个别慢查询堵塞。在我的环境中,一开始把items表也转成TokuDB了,结果有个画图的SQL执行计划不准确,非常慢。后来发现items表也需要用到外键,于是又转回InnoDB表,这个SQL也恢复正常了。


数据库初始化脚本我整理后提供下载了,大家可以在PC端打开原文链接下载使用。

Zabbix版本:Zabbix 2.2.0
TokuDB版本:Percona-5.6.17, TokuDB-7.1.6(插件加载模式)

            </div>
相关实践学习
每个IT人都想学的“Web应用上云经典架构”实战
本实验从Web应用上云这个最基本的、最普遍的需求出发,帮助IT从业者们通过“阿里云Web应用上云解决方案”,了解一个企业级Web应用上云的常见架构,了解如何构建一个高可用、可扩展的企业级应用架构。
MySQL数据库入门学习
本课程通过最流行的开源数据库MySQL带你了解数据库的世界。 &nbsp; 相关的阿里云产品:云数据库RDS MySQL 版 阿里云关系型数据库RDS(Relational Database Service)是一种稳定可靠、可弹性伸缩的在线数据库服务,提供容灾、备份、恢复、迁移等方面的全套解决方案,彻底解决数据库运维的烦恼。 了解产品详情:&nbsp;https://www.aliyun.com/product/rds/mysql&nbsp;
相关文章
|
8天前
|
数据采集 人工智能 安全
|
17天前
|
云安全 监控 安全
|
3天前
|
机器学习/深度学习 人工智能 前端开发
构建AI智能体:七十、小树成林,聚沙成塔:随机森林与大模型的协同进化
随机森林是一种基于决策树的集成学习算法,通过构建多棵决策树并结合它们的预测结果来提高准确性和稳定性。其核心思想包括两个随机性:Bootstrap采样(每棵树使用不同的训练子集)和特征随机选择(每棵树分裂时只考虑部分特征)。这种方法能有效处理大规模高维数据,避免过拟合,并评估特征重要性。随机森林的超参数如树的数量、最大深度等可通过网格搜索优化。该算法兼具强大预测能力和工程化优势,是机器学习中的常用基础模型。
291 164
|
2天前
|
机器学习/深度学习 自然语言处理 机器人
阿里云百炼大模型赋能|打造企业级电话智能体与智能呼叫中心完整方案
畅信达基于阿里云百炼大模型推出MVB2000V5智能呼叫中心方案,融合LLM与MRCP+WebSocket技术,实现语音识别率超95%、低延迟交互。通过电话智能体与座席助手协同,自动化处理80%咨询,降本增效显著,适配金融、电商、医疗等多行业场景。
300 155
|
4天前
|
机器学习/深度学习 人工智能 前端开发
构建AI智能体:六十九、Bootstrap采样在大模型评估中的应用:从置信区间到模型稳定性
Bootstrap采样是一种通过有放回重抽样来评估模型性能的统计方法。它通过从原始数据集中随机抽取样本形成多个Bootstrap数据集,计算统计量(如均值、标准差)的分布,适用于小样本和非参数场景。该方法能估计标准误、构建置信区间,并量化模型不确定性,但对计算资源要求较高。Bootstrap特别适合评估大模型的泛化能力和稳定性,在集成学习、假设检验等领域也有广泛应用。与传统方法相比,Bootstrap不依赖分布假设,在非正态数据中表现更稳健。
233 113
|
11天前
|
SQL 自然语言处理 调度
Agent Skills 的一次工程实践
**本文采用 Agent Skills 实现整体智能体**,开发框架采用 AgentScope,模型使用 **qwen3-max**。Agent Skills 是 Anthropic 新推出的一种有别于mcp server的一种开发方式,用于为 AI **引入可共享的专业技能**。经验封装到**可发现、可复用的能力单元**中,每个技能以文件夹形式存在,包含特定任务的指导性说明(SKILL.md 文件)、脚本代码和资源等 。大模型可以根据需要动态加载这些技能,从而扩展自身的功能。目前不少国内外的一些框架也开始支持此种的开发方式,详细介绍如下。
801 6