从一个案例深入剖析InnoDB隐式锁和可见性判断(1)

本文涉及的产品
RDS MySQL DuckDB 分析主实例,集群系列 4核8GB
简介: 从一个案例深入剖析InnoDB隐式锁和可见性判断

一、问题抛出

最近遇到一个问题,得到栈如下(5.6.25):

image.png

出现这个问题的时候只存在一个读写事务,那就是本事务。对这里的红色部分比较感兴趣,但是这里不是所有的内容都和这个问题相关,主要还是围绕可见性判断和隐式锁判定进行,算是我的思考过程。但是对Innodb认知水平有限,如有误导请谅解。使用的源码版本5.7.29。

二、read view 简述

关于read view说明的文章已经很多了,我这里简单记录一下我学习的地方。一致性读取(consistent read),根据隔离级别的不同,会在不同的时机建立read view,如下:

  • RR 事务的第一个select命令发起的时候建立read view,直到事务提交释放
  • RC 事务的每一个select都会单独建立read view

有了read view 就能够对每行数据的可见性进行判断了,下面是read view中的关键属性

  • m_up_limit_id:如果行的trx id 小于了m_up_limit_id则不可见。
  • m_low_limit_id:如果行的trx id 大于了m_low_limit_id则可见。
  • m_ids:是用于记录建立read view时刻的读写事务的vector数组,用于对于m_up_limit_id和m_low_limit_id之间的trx需要根据它来进行判定,是否处于活跃状态。
  • m_low_limit_no则用于记录建立read view时刻的最小trx no,主要用于purge线程判断清理undo使用。

如何拿到值得具体可以参见附录,而对于可见性的判断我们可以参考如下函数:

/** Check whether the changes by id are visible.
 @param[in] id transaction id to check against the view
 @param[in] name table name
 @return whether the view sees the modifications of id. */
 bool changes_visible(
  trx_id_t  id,
  const table_name_t& name) const
  MY_ATTRIBUTE((warn_unused_result))
 {
  ut_ad(id > 0);
  if (id < m_up_limit_id || id == m_creator_trx_id) { //小于 可见
   return(true);
  }
  check_trx_id_sanity(id, name);
  if (id >= m_low_limit_id) { //大于不可见
   return(false);
  } else if (m_ids.empty()) { //如果之间的 active 为空 则可见 
   return(true);
  }
  const ids_t::value_type* p = m_ids.data();
  return(!std::binary_search(p, p + m_ids.size(), id)); //否则比较本trx id 是否在这之中,如果在不可以见,反之可见
 }

三、关于可见性判断的几个问题

1、有大量的删除行,且已经提交,但是没有被purge线程清理

这种情况由于大量删除行(或者update)并且已经提交,但是由于有长时间的select语句导致read view记录的状态也比较陈旧,因此根据m_low_limit_no的判断purge线程是不能清理一些比较老旧的undo的,因此这会导致一个问题,如果这些del flag的记录会存在于逻辑记录链表内部,因此其他select扫描的时候回根据next offset扫描到,但是根据可见性判断条件这些del flag的记录trx id小于本select语句的read view 的 m_up_limit_id,因此是可见的debug如下:

387             return(view->changes_visible(trx_id, index->table->name));

(gdb) p view->changes_visible(trx_id, index->table->name)
$14 = true


但是因为已经标记为del flag因此会做跳过处理如下:

row_search_mvcc:
if (rec_get_deleted_flag(rec, comp)) {
/ The record is delete-marked: we can skip it /
...
goto next_rec;

也就是实际上在长时间read view的“保护”下,我们的undo不能清理,并且del flag不能清理还保存在block的逻辑链表中,扫描的时候会实际扫描到,只是做了跳过处理。因此会出现如下现象

image.png

这就是上面说的原因,虽然没有数据了,但是查询依旧很慢。

2、大量删除,还未提交

那么select扫描的时候会根据next offset 扫描到,但是由于read view 判断这些数据的trx id 位于 m_up_limit_id和m_low_limit_id之间,需要根据事务是否活跃(read view的m_ids,显然这里是活跃的)通过undo构建其前印象,如下判断:

lock_clust_rec_cons_read_sees
trx_id_t trx_id = row_get_rec_trx_id(rec, index, offsets);
return(view->changes_visible(trx_id, index->table->name));
3、using index也可能回表

我们知道如果执行计划使用到using index那么不会回表去取主键的数据,使用整个二级索引即可。但是这里有一种特殊情况,这里进行描述。

对于二级索引而言,因为row记录不包含trx id和undo ptr两个伪列,那么其可见性判断和前的印象构建均需要回表获取主键的记录,当然可见性判断可以先根据本二级索引page的max trx id是否小于read view的m_up_limit_id来进行第一次粗略过滤,那么可见性判断的可能性就低很多,如果通过了这个比对,那么剩余精确判断还是需要回表通过主键来比对才行,如下:

  • 对于二级索引回表操作来讲,精确的可见性判断放到了回表后的lock_clust_rec_cons_read_sees函数上,关于二级索引的回表,参考附录。
  • 对于不回表访问(using index),通过了粗略判断后(lock_sec_rec_cons_read_sees),如果遇到需要精确的可见性判断,那么也是要回表的,原因前面解释了(row记录不包含trx id和undo ptr),参考附录。

对于这个问题我们可以简单的做如下的测试,当然需要打断点才行:

测试表如下:
mysql> show create table testimp4 \G
1. row **
Table: testimp4
Create Table: CREATE TABLE `testimp4` (
`id` int(11) NOT NULL AUTO_INCREMENT,
`a` int(11) DEFAULT NULL,
`b` int(11) DEFAULT NULL,
`d` varchar(200) DEFAULT NULL,
PRIMARY KEY (`id`),
KEY `b` (`b`),
KEY `d` (`d`)
) ENGINE=InnoDB AUTO_INCREMENT=10000 DEFAULT CHARSET=utf8
1 row in set (0.00 sec)

mysql> begin;
Query OK, 0 rows affected (0.00 sec)

mysql> select * from testimp4;
+------+------+------+------------------------------------+
| id | a | b | d |
+------+------+------+------------------------------------+
| 5 | 5 | 300 | NULL |
| 6 | 7000 | 7700 | 1124 |
| 11 | 7000 | 7700 | 1124 |
| 12 | 7000 | 7700 | 1124 |
| 13 | 2900 | 1800 | NULL |
| 14 | 2900 | 1800 | NULL |
| 1000 | 88 | 1499 | NULL |
| 4000 | 6000 | 5904 | iiiafsafasfihhhccccchhhigggofgo111 |
| 4001 | 7000 | 7700 | 1124454555 |
| 9999 | 9999 | 9999 | a |
+------+------+------+------------------------------------+
10 rows in set (0.00 sec)

对于下列语句的执行话是:

mysql> desc select b from testimp4  where b=300;
+----+-------------+----------+------------+------+---------------+------+---------+-------+------+----------+-------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+----+-------------+----------+------------+------+---------------+------+---------+-------+------+----------+-------------+
| 1 | SIMPLE | testimp4 | NULL | ref | b | b | 5 | const | 1 | 100.00 | Using index |
+----+-------------+----------+------------+------+---------------+------+---------+-------+------+----------+-------------+
1 row in set, 1 warning (0.00 sec)

我们做如下语句:

T1

T2

begin;delete from testimp4 where id=5;(不提交)



select b from testimp4 where b=300;(这里是需要回表的)

这里显然T2(5 ,5 ,300 ,NULL )的这条记录已经被T1删除了,但是没有提交,T2首先判断二级索引b上这行数据所在的page其max trx id是否小于本select语句的read view的m_up_limit_id,显然这不成立,因为T1还会处于活跃状态,然后就进入了回表判断流程。栈如下:

#0  lock_clust_rec_cons_read_sees (rec=0x7fff060980a8 "\200", index=0x7ffec0499330, offsets=0x7fffe8399a70, view=0x33b1368)
at /home/mysql/soft/percona-server-5.7.29-32/storage/innobase/lock/lock0lock.cc:369
#1 0x0000000001afbca4 in Row_sel_get_clust_rec_for_mysql::operator() (this=0x7fffe839a2d0, prebuilt=0x7ffec80c97a0, sec_index=0x7ffec049a2c0, rec=0x7fff060a008c "\200",
thr=0x7ffec80c9f88, out_rec=0x7fffe839a310, offsets=0x7fffe839a2e8, offset_heap=0x7fffe839a2f0, vrow=0x0, mtr=0x7fffe8399d90)
at /home/mysql/soft/percona-server-5.7.29-32/storage/innobase/row/row0sel.cc:3763
#2 0x0000000001b00a94 in row_search_mvcc (buf=0x7ffec80c8a00 <incomplete sequence \375>, mode=PAGE_CUR_GE, prebuilt=0x7ffec80c97a0, match_mode=1, direction=0)
at /home/mysql/soft/percona-server-5.7.29-32/storage/innobase/row/row0sel.cc:6051



            </div>
相关实践学习
每个IT人都想学的“Web应用上云经典架构”实战
本实验从Web应用上云这个最基本的、最普遍的需求出发,帮助IT从业者们通过“阿里云Web应用上云解决方案”,了解一个企业级Web应用上云的常见架构,了解如何构建一个高可用、可扩展的企业级应用架构。
MySQL数据库入门学习
本课程通过最流行的开源数据库MySQL带你了解数据库的世界。 &nbsp; 相关的阿里云产品:云数据库RDS MySQL 版 阿里云关系型数据库RDS(Relational Database Service)是一种稳定可靠、可弹性伸缩的在线数据库服务,提供容灾、备份、恢复、迁移等方面的全套解决方案,彻底解决数据库运维的烦恼。 了解产品详情:&nbsp;https://www.aliyun.com/product/rds/mysql&nbsp;
相关文章
|
3月前
|
关系型数据库 MySQL 数据库
自建数据库如何迁移至RDS MySQL实例
数据库迁移是一项复杂且耗时的工程,需考虑数据安全、完整性及业务中断影响。使用阿里云数据传输服务DTS,可快速、平滑完成迁移任务,将应用停机时间降至分钟级。您还可通过全量备份自建数据库并恢复至RDS MySQL实例,实现间接迁移上云。
|
6月前
|
JSON 数据可视化 API
产品经理的技术必修课:四步掌握API设计核心逻辑
产品经理的技术必修课:四步掌握API设计核心逻辑
279 83
|
8月前
|
NoSQL Java API
在Java环境下如何进行Redis数据库的操作
总的来说,使用Jedis在Java环境下进行Redis数据库的操作,是一种简单而高效的方法。只需要几行代码,就可以实现复杂的数据操作。同时,Jedis的API设计得非常直观,即使是初学者,也可以快速上手。
377 94
|
4月前
|
人工智能 运维 监控
云+应用一体化可观测:破局“云上困境”,让运维驱动业务增长
当云计算迈入深入上云新阶段,数智化升级的关键课题已从“简单上云”演进至“精细治云”。随着企业对云计算的依赖日益加深,如何高效管理云端资源及其稳定性成为新的挑战。为此,阿里云推出云+应用一体化可观测方案,通过阿里云应用运维平台(Application Operation Platform,简称“AOP”)构建覆盖应用全生命周期一体化可观测产品体系,推动运维模式由被动响应向主动预防转变,实现故障的快速发现、定界与恢复,保障云上业务稳定运行。 目前,该方案已成功服务超过50家行业头部客户,为政务云平台、金融核心系统、能源调度中枢等关键基础设施提供全天候安全运维保障。
292 0
|
7月前
|
开发者
(在线CAD控件)网页CAD实现粗糙度标注的方法
本文介绍了通过MxCAD二次开发实现机械制图中表面粗糙度符号的标注功能。表面粗糙度符号用于表示零件表面微观不平度,基本形式为三角形,可结合不同修饰(如加横线、小圆等)表达具体加工要求。文章解析了符号含义,并基于McDbCustomEntity类创建自定义实体,实现符号绘制、数据持久化、夹点设置等功能。此外,还提供了用户交互式标注方法,支持根据直线、圆弧或指定角度生成粗糙度标注。最后展示了效果演示及扩展开发示例,便于开发者进一步定制功能。
|
9月前
|
JavaScript 算法 前端开发
JS数组操作方法全景图,全网最全构建完整知识网络!js数组操作方法全集(实现筛选转换、随机排序洗牌算法、复杂数据处理统计等情景详解,附大量源码和易错点解析)
这些方法提供了对数组的全面操作,包括搜索、遍历、转换和聚合等。通过分为原地操作方法、非原地操作方法和其他方法便于您理解和记忆,并熟悉他们各自的使用方法与使用范围。详细的案例与进阶使用,方便您理解数组操作的底层原理。链式调用的几个案例,让您玩转数组操作。 只有锻炼思维才能可持续地解决问题,只有思维才是真正值得学习和分享的核心要素。如果这篇博客能给您带来一点帮助,麻烦您点个赞支持一下,还可以收藏起来以备不时之需,有疑问和错误欢迎在评论区指出~
|
消息中间件 前端开发 数据库
RocketMQ实战教程之MQ简介与应用场景
RocketMQ实战教程介绍了MQ的基本概念和应用场景。MQ(消息队列)是生产者和消费者模型,用于异步传输数据,实现系统解耦。消息中间件在生产者发送消息和消费者接收消息之间起到邮箱作用,简化通信。主要应用场景包括:1)应用解耦,如订单系统与库存系统的非直接交互;2)异步处理,如用户注册后的邮件和短信发送延迟处理,提高响应速度;3)流量削峰,如秒杀活动限制并发流量,防止系统崩溃。
|
消息中间件 Unix Linux
【C语言】进程和线程详解
在现代操作系统中,进程和线程是实现并发执行的两种主要方式。理解它们的区别和各自的应用场景对于编写高效的并发程序至关重要。
436 6
|
SQL 存储 人工智能
OceanBase CTO杨传辉谈AI时代下数据库技术的创新演进路径!
在「DATA+AI」见解论坛上,OceanBase CTO杨传辉先生分享了AI与数据库技术融合的最新进展。他探讨了AI如何助力数据库技术演进,并介绍了OceanBase一体化数据库的创新。OceanBase通过单机分布式一体化架构,实现了从小规模到大规模的无缝扩展,具备高可用性和高效的数据处理能力。此外,OceanBase还实现了交易处理、分析和AI的一体化,大幅提升了系统的灵活性和性能。杨传辉强调,OceanBase的目标是成为一套能满足80%工作负载需求的系统,推动AI技术在各行各业的广泛应用。关注我们,深入了解AI与大数据的未来!
OceanBase CTO杨传辉谈AI时代下数据库技术的创新演进路径!
|
SQL Java 调度
实时计算 Flink版产品使用问题之使用Spring Boot启动Flink处理任务时,使用Spring Boot的@Scheduled注解进行定时任务调度,出现内存占用过高,该怎么办
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。