FAQ系列 | 如何保证主从复制数据一致性

本文涉及的产品
RDS MySQL DuckDB 分析主实例,集群系列 4核8GB
简介: FAQ系列 | 如何保证主从复制数据一致性

导读

MySQL主从复制环境中,如何才能保证主从数据的一致性呢?

关于主从复制

现在常用的MySQL高可用方案,十有八九是基于 MySQL的主从复制(replication)来设计的,包括常规的一主一从、双主模式,或者半同步复制(semi-sync replication)。

我们常常把MySQL replication说成是MySQL同步(sync),但事实上这个过程是异步(async)的。大概过程是这样的:

  1. 在master上提交事务后,并且写入binlog,返回事务成功标记;
  2. 将binlog发送到slave,转储成relay log;
  3. 在slave上再将relay log读取出来应用。

步骤1和步骤3之间是异步进行的,无需等待确认各自的状态,所以说MySQL replication是异步的。

MySQL semi-sync replication在之前的基础上做了加强完善,整个流程变成了下面这样:

  1. 首先,master和至少一个slave都要启用semi-sync replication模式;
  2. 某个slave连接到master时,会主动告知当前自己是否处于semi-sync模式;
  3. 在master上提交事务后,写入binlog后,还需要通知至少一个slave收到该事务,等待写入relay log并成功刷新到磁盘后,向master发送“slave节点已完成该事务”确认通知;
  4. master收到上述通知后,才可以真正完成该事务提交,返回事务成功标记;
  5. 在上述步骤中,当slave向master发送通知时间超过rpl_semi_sync_master_timeout设定值时,主从关系会从semi-sync模式自动调整成为传统的异步复制模式。

半同步复制看起来很美好有木有呢,但如果网络质量不高,是不是出现抖动,触发上述第5条的情况,会从半同步复制降级为普通复制;此外,采用半同步复制,会导致master上的tps性能下降非常严重,最严重的情况下可能会损失50%以上。

这样来看,除非需要非常严格保证数据一致性等迫不得已的场景,就不太建议使用半同步复制了。当然了,事实上我们也可以通过加强程序端的逻辑控制,来避免主从数据不一致时发生逻辑错误,比如说如果在从上读取到的数据和主不一致的话,那么就触发主从间的一次数据修复工作。或者,我们也可以用 pt-table-checksum & pt-table-sync 两个工具来校验并修复数据,只要运行频率适当,是可行的。

真想要提高多节点间的数据一致性,可以考虑采用PXC方案。现在已知用PXC规模较大的有qunar、sohu,如果团队里初期没有人能比较专注PXC的话,还是要谨慎些,毕竟和传统的主从复制差异很大,出现问题时需要花费更多精力去排查解决。

如何保证主从复制数据一致性

上面说完了异步复制、半同步复制、PXC,我们回到主题:在常规的主从复制场景里,如何能保证主从数据的一致性,不要出现数据丢失等问题呢?

在MySQL中,一次事务提交后,需要写undo、写redo、写binlog,写数据文件等等。在这个过程中,可能在某个步骤发生crash,就有可能导致主从数据的不一致。为了避免这种情况,我们需要调整主从上面相关选项配置,确保即便发生crash了,也不能发生主从复制的数据丢失。

1. 在master上修改配置

innodb_flush_log_at_trx_commit = 1
sync_binlog = 1

上述两个选项的作用是:保证每次事务提交后,都能实时刷新到磁盘中,尤其是确保每次事务对应的binlog都能及时刷新到磁盘中,只要有了binlog,InnoDB就有办法做数据恢复,不至于导致主从复制的数据丢失。

2. 在slave上修改配置

master_info_repository = "TABLE"

relay_log_info_repository = "TABLE"
relay_log_recovery = 1

上述前两个选项的作用是:确保在slave上和复制相关的元数据表也采用InnoDB引擎,受到InnoDB事务安全的保护,而后一个选项的作用是开启relay log自动修复机制,发生crash时,会自动判断哪些relay log需要重新从master上抓取回来再次应用,以此避免部分数据丢失的可能性。

通过上面几个选项的调整,就可以确保主从复制数据不会发生丢失了。但是,这并不能保证主从数据的绝对一致性,因为,有可能设置了ignore\do\rewrite等replication规则,或者某些SQL本身存在不确定因素,或者人为在slave上修改数据,最终导致主从数据不一致。这种情况下,可以采用pt-table-checksum 和 pt-table-sync 工具来进行数据的校验和修复。

            </div>
相关实践学习
每个IT人都想学的“Web应用上云经典架构”实战
本实验从Web应用上云这个最基本的、最普遍的需求出发,帮助IT从业者们通过“阿里云Web应用上云解决方案”,了解一个企业级Web应用上云的常见架构,了解如何构建一个高可用、可扩展的企业级应用架构。
MySQL数据库入门学习
本课程通过最流行的开源数据库MySQL带你了解数据库的世界。 &nbsp; 相关的阿里云产品:云数据库RDS MySQL 版 阿里云关系型数据库RDS(Relational Database Service)是一种稳定可靠、可弹性伸缩的在线数据库服务,提供容灾、备份、恢复、迁移等方面的全套解决方案,彻底解决数据库运维的烦恼。 了解产品详情:&nbsp;https://www.aliyun.com/product/rds/mysql&nbsp;
相关文章
|
Java 开发者 UED
【实战宝典】Java异常处理大师级教程:throws关键字,让异常声明成为你的专属标签!
【6月更文挑战第19天】在Java中,`throws`关键字是异常处理的关键,它提升了方法签名的透明度和代码质量。不使用`throws`时,未捕获的异常可能导致程序崩溃。例如,`readFileContent`方法若不声明`throws IOException`,则隐藏了可能的风险。而明确声明如`throws IOException`,提醒调用者需处理异常,增强代码稳定性。
272 3
|
Windows
如何使用GUID硬盘分区格式安装新windows系统
这篇文章介绍了全局唯一标识分区表(GUID Partition Table, GPT)与主引导记录(Master Boot Record, MBR)两种硬盘分区格式的区别。
1107 0
|
容器
section元素
【9月更文挑战第1天】section元素。
221 5
|
人工智能 运维 Cloud Native
阿里巴巴云原生大数据运维平台 SREWorks 正式开源
阿里巴巴云原生大数据运维平台 SREWorks,沉淀了团队近10年经过内部业务锤炼的 SRE 工程实践,今天正式对外开源,秉承“数据化、智能化”运维思想,帮助运维行业更多的从业者采用“数智”思想做好高效运维
|
Linux
9.9 Linux ACL权限设置(setfacl和getfacl)
通过上一节的学习,我们知道了什么是 ACL 权限,也了解了如何配置 Linux 系统使其开启 ACL 权限,本节来学习 ACL 设定文件访问权限的具体方法。
953 0
9.9 Linux ACL权限设置(setfacl和getfacl)
PolarDB-X 1.0-SQL 手册-函数-窗口函数
传统的Group By函数会按照分组后的查询结果进行聚合计算,且每个分组只输出一条数据。但与传统的Group By函数不同,窗口函数(也称OLAP函数)可以为每个分组返回多个值,且不会影响记录的数量。本文介绍如何使用窗口函数。
425 0
|
JavaScript 应用服务中间件 nginx
如何启动一个本地静态服务器
背景 学习前端开发,想要调试静态页面以及js,发现直接本地打开会有跨域异常。因此,需要启动一个静态服务器,只负责当前目录的文件路由。 目前尝试了两种方式。一种是Nginx, 一种是NodeJS服务器。最终推荐NodeJS。
1628 0
|
算法 C语言
算法之【牛顿迭代法】
众所周知,计算机的基本数值算法是加减乘除,甚至只是加减法。而次方和开根算法都是由四则运算混合表示而成的,因而根号计算比四则运算要慢很多。无理数如√2的浮点数计算就是由牛顿迭代法得出的。
1125 0
|
缓存 MySQL 关系型数据库
MySQL · 答疑解惑 · MySQL 优化器 range 的代价计算
本文我们从一个索引选择的问题出发,来研究一下 MySQL 中 range 代价的计算过程,进而分析这种计算过程中存在的问题。 问题现象 第一种情况:situation_unique_key_id mysql> show create table cpa_order\G ***********
1413 0

热门文章

最新文章