【笔记】开发指南—SQL调优指南—SQL调优进阶—子查询优化和执行

简介: 子查询是指在父查询的WHERE子句或HAVING子句中嵌套另一个SELECT语句的查询,本文主要介绍如何子查询。

基本概念

根据是否存在关联项,子查询可以分为非关联子查询和关联子查询。非关联子查询是指该子查询的执行不依赖外部查询的变量,这种子查询一般只需要计算一次;而关联子查询中存在引用自外层查询的变量,逻辑上,这种子查询需要每次带入相应的变量、计算多次。


/* 例子:非关联子查询 */
SELECT * FROM lineitem WHERE l_partkey IN (SELECT p_partkey FROM part);
/* 例子:关联子查询(l_suppkey 是关联项) */
SELECT * FROM lineitem WHERE l_partkey IN (SELECT ps_partkey FROM partsupp WHERE ps_suppkey = l_suppkey);

PolarDB-X子查询支持绝大多数的子查询写法,具体参见SQL使用限制

子查询执行

对于多数常见的子查询形式,PolarDB-X可以将其改写为高效的SemiJoin或类似的基于JOIN的计算方式。这样做的好处是显而易见的。当数据量较大时,无需真正带入不同参数循环迭代,大大降低了执行代价。这种查询改写技术称为子查询的去关联化(Unnesting)。

如下示例中2个子查询去关联化可以看到执行计划中使用JOIN代替了子查询。


> EXPLAIN SELECT p_partkey, (
      SELECT COUNT(ps_partkey) FROM partsupp WHERE ps_suppkey = p_partkey
      ) supplier_count FROM part;
Project(p_partkey="p_partkey", supplier_count="CASE(IS NULL($10), 0, $9)", cor=[$cor0])
  HashJoin(condition="p_partkey = ps_suppkey", type="left")
    Gather(concurrent=true)
      LogicalView(tables="part_[0-7]", shardCount=8, sql="SELECT * FROM `part` AS `part`")
    Project(count(ps_partkey)="count(ps_partkey)", ps_suppkey="ps_suppkey", count(ps_partkey)2="count(ps_partkey)")
      HashAgg(group="ps_suppkey", count(ps_partkey)="SUM(count(ps_partkey))")
        Gather(concurrent=true)
          LogicalView(tables="partsupp_[0-7]", shardCount=8, sql="SELECT `ps_suppkey`, COUNT(`ps_partkey`) AS `count(ps_partkey)` FROM `partsupp` AS `partsupp` GROUP BY `ps_suppkey`")


> EXPLAIN SELECT p_partkey, (

SELECT COUNT(ps_partkey) FROM partsupp WHERE ps_suppkey = p_partkey
) supplier_count FROM part;
Project(p_partkey="p_partkey", supplier_count="CASE(IS NULL($10), 0, $9)", cor=[$cor0])
HashJoin(condition="p_partkey = ps_suppkey", type="left")
Gather(concurrent=true)
LogicalView(tables="part_[0-7]", shardCount=8, sql="SELECT * FROM `part` AS `part`")
Project(count(ps_partkey)="count(ps_partkey)", ps_suppkey="ps_suppkey", count(ps_partkey)2="count(ps_partkey)")
HashAgg(group="ps_suppkey", count(ps_partkey)="SUM(count(ps_partkey))")
Gather(concurrent=true)
LogicalView(tables="partsupp_[0-7]", shardCount=8, sql="SELECT `ps_suppkey`, COUNT(`ps_partkey`) AS `count(ps_partkey)` FROM `partsupp` AS `partsupp` GROUP BY `ps_suppkey`")

某些场景下,PolarDB-X无法将子查询进行去关联化,这时会采用迭代执行的方式。如果外层查询数据量很大,迭代执行可能会非常慢。

如下示例由于OR l_partkey < 50的存在,导致子查询无法被去关联化,因而采用了迭代执行:


> EXPLAIN SELECT * FROM lineitem WHERE l_partkey IN (SELECT ps_partkey FROM partsupp WHERE ps_suppkey = l_suppkey) OR l_partkey IS NOT
Filter(condition="IS(in,[$1])[29612489] OR l_partkey < ?0")
Gather(concurrent=true)
LogicalView(tables="QIMU_0000_GROUP,QIMU_0001_GROUP.lineitem_[0-7]", shardCount=8, sql="SELECT * FROM `lineitem` AS `lineitem`")
>> individual correlate subquery : 29612489
Gather(concurrent=true)
LogicalView(tables="QIMU_0000_GROUP,QIMU_0001_GROUP.partsupp_[0-7]", shardCount=8, sql="SELECT * FROM (SELECT `ps_partkey` FROM `partsupp` AS `partsupp` WHERE (`ps_suppkey` = `l_suppkey`)) AS `t0` WHERE (((`l_partkey` = `ps_partkey`) OR (`l_partkey` IS NULL)) OR (`ps_partkey` IS NULL))")

这种情形下,建议改写SQL去掉子查询的OR条件。

相关文章
|
8天前
|
数据采集 人工智能 安全
|
17天前
|
云安全 监控 安全
|
3天前
|
机器学习/深度学习 人工智能 前端开发
构建AI智能体:七十、小树成林,聚沙成塔:随机森林与大模型的协同进化
随机森林是一种基于决策树的集成学习算法,通过构建多棵决策树并结合它们的预测结果来提高准确性和稳定性。其核心思想包括两个随机性:Bootstrap采样(每棵树使用不同的训练子集)和特征随机选择(每棵树分裂时只考虑部分特征)。这种方法能有效处理大规模高维数据,避免过拟合,并评估特征重要性。随机森林的超参数如树的数量、最大深度等可通过网格搜索优化。该算法兼具强大预测能力和工程化优势,是机器学习中的常用基础模型。
291 164
|
2天前
|
机器学习/深度学习 自然语言处理 机器人
阿里云百炼大模型赋能|打造企业级电话智能体与智能呼叫中心完整方案
畅信达基于阿里云百炼大模型推出MVB2000V5智能呼叫中心方案,融合LLM与MRCP+WebSocket技术,实现语音识别率超95%、低延迟交互。通过电话智能体与座席助手协同,自动化处理80%咨询,降本增效显著,适配金融、电商、医疗等多行业场景。
300 155
|
4天前
|
机器学习/深度学习 人工智能 前端开发
构建AI智能体:六十九、Bootstrap采样在大模型评估中的应用:从置信区间到模型稳定性
Bootstrap采样是一种通过有放回重抽样来评估模型性能的统计方法。它通过从原始数据集中随机抽取样本形成多个Bootstrap数据集,计算统计量(如均值、标准差)的分布,适用于小样本和非参数场景。该方法能估计标准误、构建置信区间,并量化模型不确定性,但对计算资源要求较高。Bootstrap特别适合评估大模型的泛化能力和稳定性,在集成学习、假设检验等领域也有广泛应用。与传统方法相比,Bootstrap不依赖分布假设,在非正态数据中表现更稳健。
233 113
|
11天前
|
SQL 自然语言处理 调度
Agent Skills 的一次工程实践
**本文采用 Agent Skills 实现整体智能体**,开发框架采用 AgentScope,模型使用 **qwen3-max**。Agent Skills 是 Anthropic 新推出的一种有别于mcp server的一种开发方式,用于为 AI **引入可共享的专业技能**。经验封装到**可发现、可复用的能力单元**中,每个技能以文件夹形式存在,包含特定任务的指导性说明(SKILL.md 文件)、脚本代码和资源等 。大模型可以根据需要动态加载这些技能,从而扩展自身的功能。目前不少国内外的一些框架也开始支持此种的开发方式,详细介绍如下。
803 6