企业级运维之云原生与Kubernetes实战课程 - 第四章第4讲 ACK集群弹性伸缩

简介: 弹性伸缩是根据业务需求和策略,经济地自动调整弹性计算资源的管理服务。

企业级运维之云原生与Kubernetes实战课程

第四章第4 ACK集群弹性伸缩

 

 

视频地址:

https://developer.aliyun.com/learning/course/913/detail/14608

 

 

一、 弹性伸缩概述

 

1.  集群弹性伸缩

 

弹性伸缩是根据业务需求和策略,经济地自动调整弹性计算资源的管理服务。

 

弹性伸缩的本质是解决容量和成本之间的博弈。当出现资源不足、资源浪费或激增峰值容量的场景下,就需要运用弹性伸缩,如下图。

 image.png

 

2.  弹性伸缩的优势

 

针对三类人群,弹性伸缩的优势分别是:

 

  • 开发人员:应用获得高可用的保障;
  • 运维人员:降低基础设施的管理成本;
  • 架构师:架构灵活应对突发的激增峰值。

 

3.  弹性伸缩的分类

 

弹性伸缩分为两个维度:调度层弹性和资源层弹性。

 

a.  调度层弹性:

 

  • 所有弹性都与Pod相关,而无需关心资源情况;
  • 主要负责修改负载的调度容量变化;
  • 组件包括:
  • HPAPod水平伸缩组件,调整应用的副本数;
  • VPAPod纵向伸缩组件,面向有状态服务的扩容和升级场景;
  • CronHPA:定时伸缩组件,面向周期性负载场景

 

b.  资源层弹性:

 

  • 所有弹性都与Pod和资源情况相关;
  • 主要是集群的容量规划不能满足集群调度容量时,会通过弹出ECSECI等资源的方式进行调度容量的补充;
  • 组件包括:
  • cluster-autoscaler:当Pod资源不足时,主动进行节点伸缩;
  • virtual-kubelet-autoscaler:当没有足够资源给Pod调度时,弹出虚拟节点,并将Pod调度到虚拟节点。

 

二、HPA

 

Pod水平伸缩(HPA)可以基于CPU/Memory等指标对Pod副本数进行扩缩。

 

1.  HPA原理

 

a.  HPA自动伸缩的三步骤:

 

  • 获取被伸缩资源对象管理的所有Pod度量;
  • 计算使度量数值到达或接近所指定目标数值所需的Pod数量;
  • 更新被伸缩资源的replicas字段;

image.png

 

b.  适用对象

 

  • Deployment
  • StatefulSet
  • ReplicaSet
  • ReplicationController

 

c.  不适用对象

 

  • DaemonSet

 

2.  计算所需的Pod数量

 image.png

 

如上图所示,假设有3PodCPU使用率分别是60%90%50%QPS分别为153012

 

场景一:单个Pod指标的自动伸缩

 

如果目标CPU使用率为50%,计算需要多少副本数:(60+90+50/50=4,因此,需要扩容1Pod

 

场景2:多个Pod指标的自动伸缩

 

除了目标CPU使用率指标,又增加了目标QPS指标,这时HPA会单独计算每个指标的副本数,然后取最大值;

 

当目标QPS20,副本数=15+30+12/20=3,因此两个指标的副本数取最大值就是4

 

计算公式:

 image.png

 

公式解读:所有的Pod监控数值求和后除以HPA资源上配置的目标值。

 

3.  HPA特性

 

a.  统计周期

 

  • --horizontal-Pod -autoscaler-sync-period参数控制统计指标的周期,默认15s

 

b.  忽略Pod 度量

 

  • Pod被标记为删除;
  • Pod缺失度量值,它将会被搁置,只在最终确定扩缩数量时再考虑;
  • 当使用CPU指标来扩缩时,任何还未就绪(例如还在初始化)状态的Pod,该Pod会被搁置;

 

c.  冷却、延迟支持

 

  • 场景:指标动态变化较频繁,会造成副本数量频繁变化,称之为“抖动”;
  • --horizontal-Pod -autoscaler-downscale-stabilization可以控制冷却时间,即自从上次缩容执行结束后,多久可以再次执行缩容,默认时间是5分钟;

 

d.  边界值计算

 

  • 在计算边界条件时,会自动加入10%的缓冲负载缓解整体的负载情况;

 

e.  支持的指标

 

  • 除了自带的CPUMemory指标外,还支持用户自定义指标以及外部指标。

 

4.  HPA示例

 

apiVersion: autoscaling/v1

 kind: HorizontalPodAutoscaler

 metadata:

   name:test

 spec:

   maxReplicas:3

   minReplicas:2

   scaleTargetRef:

     apiVersion:apps/v1

     kind:Deployment

     name: test1

   targetCPUUtilizationPercentage: 80

 

参数说明:

 

  • max/minReplicas:最大/最小副本数;
  • scaleTargetRef:设置当前HPA绑定的对象,在本例中绑定名为test1Deployment
  • targetCPUUntilizationPercentage:目标CPU使用率。

 

5.  创建HPA应用

 

HPA应用有两种创建方式,一种是通过容器服务器控制台创建,另一种是通过Kuberletctl命令创建。

 

a.  通过容器服务器控制台创建

 

示例:为已有应用开启HPA

 

  • 在集群管理页左侧导航栏中,选择工作负载 > 无状态;
  • 在无状态页面中,单击目标应用名称进入详情页;
  • 单击容器伸缩页签,然后单击“创建”;
  • 在创建对话框中设置伸缩配置,单击“确定”;

 image.png

 

b.  通过Kubectl命令创建

 

通过编排模板来手动创建HPA,并将其绑定到要伸缩的Deployment对象上,通过kubectl命令实现容器自动伸缩配置。

 

注意:HPA需要给Pod设置request资源,如果没有request资源,HPA不会运行。

 

三、节点自动伸缩

 

1.  节点扩容

 

节点是否扩容是根据集群中是否有pending状态的Pod来决策的。

 image.png

 

扩容原理:

 

cluster-autoscaler是通过对处在PendingPod进行监听而触发的。当Pod处在Pending的原因是调度资源不足的时候,会触发cluster-autoscaler的模拟调度,模拟调度器会计算在配置的伸缩组中,哪个伸缩组弹出节点后可以调度这些PendingPod

 

2.  节点缩容

 

节点是否缩容是根据集群中是否有节点调度利用率低于阈值来决策的。

 image.png

 

缩容原理:

 

  • 首先只有弹性伸缩弹出的节点会被缩容,静态的节点是无法被cluster-autoscaler接管的。缩容的判断是通过每个节点单独判断的,当任意一个节点的调度利用率低于所设置的调度阈值时,会触发节点的缩容判断。
  • 同时还要计算哪个伸缩组弹出节点后可以调度这些pending,此时cluster-autoscaler会尝试模拟驱逐节点上面的负载,判断当前节点是否可以排水彻底。有些特殊的Podkube-system命名空间的非DaemonSet PodPDB控制的Pod等),则会跳过该节点而选择其他的候选节点。
  • 当节点发生驱逐时,会先进行排水,将节点上的Pod驱逐到其他的节点,然后再下线该节点。

 

3.  操作演示

 

步骤一:执行自动伸缩

 

在集群列表页面,在目标集群右侧的操作列下,选择更多> 自动伸缩,进入集群自动弹性伸缩配置页面。

 

步骤二:授权

 

授权RAM角色AliyunCSManagedAutoScalerRole

 image.png

在云资源访问授权页面,单击同意授权;

 image.png

步骤三:配置自动伸缩

 

a.  在集群自动弹性伸缩配置页面,填写以下信息并提交:

 

  • 允许缩容;
  • 缩容阈值:cluster-autoscaler管理的伸缩组中,每一个节点的资源申请值(Request)与每一个节点的资源容量的比值,当低于配置的阈值时,节点会进行缩容;
  • GPU缩容阈值;
  • 缩容触发时延:集群满足配置的缩容阈值时,在配置的缩容触发时延到达后,集群开始缩容。单位:分钟,默认情况下是10分钟;
  • 静默时间:扩容出的节点,在静默时间过后,方可进入缩容判断;
  • 弹性灵敏度;
  • 节点池扩容顺序策略。

 image.png

 

b.  创建节点池,设置伸缩组的配置项;

 image.png

 

c.  单击确认配置,创建伸缩组。

 

 

本讲小结

 

1.  ACK集群伸缩的几种类型,包括HPAVPACronHPA、节点自动伸缩、虚拟节点自动伸缩;

2.  HPA水平伸缩的机制节点自动伸缩的机制。

 

思考:

  • HPA和节点自动伸缩,有什么区别?
  • 如何延缓hpa来回扩缩造成的抖动?
相关文章
|
2月前
|
Kubernetes Cloud Native Docker
云原生时代的容器化实践:Docker和Kubernetes入门
【10月更文挑战第37天】在数字化转型的浪潮中,云原生技术成为企业提升敏捷性和效率的关键。本篇文章将引导读者了解如何利用Docker进行容器化打包及部署,以及Kubernetes集群管理的基础操作,帮助初学者快速入门云原生的世界。通过实际案例分析,我们将深入探讨这些技术在现代IT架构中的应用与影响。
115 2
|
2月前
|
弹性计算 人工智能 Serverless
阿里云ACK One:注册集群云上节点池(CPU/GPU)自动弹性伸缩,助力企业业务高效扩展
在当今数字化时代,企业业务的快速增长对IT基础设施提出了更高要求。然而,传统IDC数据中心却在业务存在扩容慢、缩容难等问题。为此,阿里云推出ACK One注册集群架构,通过云上节点池(CPU/GPU)自动弹性伸缩等特性,为企业带来全新突破。
|
15天前
|
存储 Kubernetes 开发者
容器化时代的领航者:Docker 和 Kubernetes 云原生时代的黄金搭档
Docker 是一种开源的应用容器引擎,允许开发者将应用程序及其依赖打包成可移植的镜像,并在任何支持 Docker 的平台上运行。其核心概念包括镜像、容器和仓库。镜像是只读的文件系统,容器是镜像的运行实例,仓库用于存储和分发镜像。Kubernetes(k8s)则是容器集群管理系统,提供自动化部署、扩展和维护等功能,支持服务发现、负载均衡、自动伸缩等特性。两者结合使用,可以实现高效的容器化应用管理和运维。Docker 主要用于单主机上的容器管理,而 Kubernetes 则专注于跨多主机的容器编排与调度。尽管 k8s 逐渐减少了对 Docker 作为容器运行时的支持,但 Doc
86 5
容器化时代的领航者:Docker 和 Kubernetes 云原生时代的黄金搭档
|
27天前
|
存储 Kubernetes 关系型数据库
阿里云ACK备份中心,K8s集群业务应用数据的一站式灾备方案
本文源自2024云栖大会苏雅诗的演讲,探讨了K8s集群业务为何需要灾备及其重要性。文中强调了集群与业务高可用配置对稳定性的重要性,并指出人为误操作等风险,建议实施周期性和特定情况下的灾备措施。针对容器化业务,提出了灾备的新特性与需求,包括工作负载为核心、云资源信息的备份,以及有状态应用的数据保护。介绍了ACK推出的备份中心解决方案,支持命名空间、标签、资源类型等维度的备份,并具备存储卷数据保护功能,能够满足GitOps流程企业的特定需求。此外,还详细描述了备份中心的使用流程、控制台展示、灾备难点及解决方案等内容,展示了备份中心如何有效应对K8s集群资源和存储卷数据的灾备挑战。
|
2月前
|
Kubernetes Cloud Native 微服务
云原生入门与实践:Kubernetes的简易部署
云原生技术正改变着现代应用的开发和部署方式。本文将引导你了解云原生的基础概念,并重点介绍如何使用Kubernetes进行容器编排。我们将通过一个简易的示例来展示如何快速启动一个Kubernetes集群,并在其上运行一个简单的应用。无论你是云原生新手还是希望扩展现有知识,本文都将为你提供实用的信息和启发性的见解。
|
2月前
|
Kubernetes Cloud Native 开发者
云原生入门:Kubernetes的简易指南
【10月更文挑战第41天】本文将带你进入云原生的世界,特别是Kubernetes——一个强大的容器编排平台。我们将一起探索它的基本概念和操作,让你能够轻松管理和部署应用。无论你是新手还是有经验的开发者,这篇文章都能让你对Kubernetes有更深入的理解。
|
2月前
|
运维 Kubernetes Cloud Native
云原生技术入门:Kubernetes和Docker的协同工作
【10月更文挑战第43天】在云计算时代,云原生技术成为推动现代软件部署和运行的关键力量。本篇文章将带你了解云原生的基本概念,重点探讨Kubernetes和Docker如何协同工作以支持容器化应用的生命周期管理。通过实际代码示例,我们将展示如何在Kubernetes集群中部署和管理Docker容器,从而为初学者提供一条清晰的学习路径。
|
2月前
|
Kubernetes 负载均衡 Cloud Native
探索Kubernetes:云原生应用的基石
探索Kubernetes:云原生应用的基石
|
2月前
|
Kubernetes 监控 负载均衡
深入云原生:Kubernetes 集群部署与管理实践
【10月更文挑战第37天】在数字化转型的浪潮中,云原生技术以其弹性、可扩展性成为企业IT架构的首选。本文将引导你了解如何部署和管理一个Kubernetes集群,包括环境准备、安装步骤和日常维护技巧。我们将通过实际代码示例,探索云原生世界的秘密,并分享如何高效运用这一技术以适应快速变化的业务需求。
74 1
|
2月前
|
运维 Kubernetes Cloud Native
Kubernetes云原生架构深度解析与实践指南####
本文深入探讨了Kubernetes作为领先的云原生应用编排平台,其设计理念、核心组件及高级特性。通过剖析Kubernetes的工作原理,结合具体案例分析,为读者呈现如何在实际项目中高效部署、管理和扩展容器化应用的策略与技巧。文章还涵盖了服务发现、负载均衡、配置管理、自动化伸缩等关键议题,旨在帮助开发者和运维人员掌握利用Kubernetes构建健壮、可伸缩的云原生生态系统的能力。 ####

热门文章

最新文章