开发指南—DAL语句—EXPLAIN

简介: 该语句用于解释SQL语句的执行计划,包括SELECT、DELETE、INSERT、REPLACE或UPDATE语句。

语法

获取SQL计划信息:


EXPLAIN
{LOGICALVIEW | LOGIC | SIMPLE | DETAIL | EXECUTE | PHYSICAL | OPTIMIZER | SHARDING
 | COST | ANALYZE | BASELINE | JSON_PLAN | ADVISOR} 
 {SELECT statement | DELETE statement | INSERT statement | REPLACE statement| UPDATE statement}

示例

  • explain语句:展示基本的SQL执行计划,该执行计划是算子组成,主要体现SQL在CN上的整个执行过程。
mysql> explain select count(*) from lineitem group by L_ORDERKEY;

+------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| LOGICAL EXECUTIONPLAN |
+------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| Project(count()="count()") |
| HashAgg(group="L_ORDERKEY", count()="SUM(count())") |
| Gather(concurrent=true) |
| LogicalView(tables="[000000-000003].lineitem_[00-15]", shardCount=16, sql="SELECT `L_ORDERKEY`, COUNT() AS `count()` FROM `lineitem` AS `lineitem` GROUP BY `L_ORDERKEY`") |
| HitCache:false | |
| TemplateId: 5819c807 |
+------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
  • 其中,HitCache标记该查询是否命中PlanCache,取值为false or trueTemplateId表示对该计划的标识,具有全局唯一性。
  • explain logicalview语句:展示LogicalView所表示的下推SQL在DN上的执行计划。
mysql> explain LOGICALVIEW select  mysql> explain select logialview count(*) from lineitem group by L_ORDERKEY;
+----------------------------------------------------------+
| LOGICAL EXECUTIONPLAN |
+----------------------------------------------------------+
| Project(count()="count()") |
| HashAgg(group="L_ORDERKEY", count()="SUM(count())") |
| Gather(concurrent=true) |
| LogicalView |
| MysqlAgg(group="L_ORDERKEY", count(*)="COUNT()") |
| MysqlTableScan(name=[ads, lineitem]) |
| HitCache:true |
| Source:PLAN_CACHE |
| TemplateId: 5819c807
  • explain execute语句:表示下推SQL在mysql的执行情况,这个语句和mysql的explain语句同义。通过该语句可以查看下推SQL在DN上有没有使用索引,有没有做全表扫描。
mysql> explain EXECUTE  select  count(*) from lineitem group by L_ORDERKEY;
+----+-------------+----------+------------+-------+---------------+---------+---------+-----+------+----------+----------------------------------------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+----+-------------+----------+------------+-------+---------------+---------+---------+-----+------+----------+----------------------------------------------+
| 1 | SIMPLE | lineitem | NULL | index | PRIMARY | PRIMARY | 8 | NULL | 1 | 100 | Using index; Using temporary; Using filesort |
+----+-------------+----------+------------+-------+---------------+---------+---------+-----+------+----------+----------------------------------------------+
1 row in set (0.24 sec)
  • explain sharding语句:展示当前查询在DN上扫描的物理分片情况。
mysql> explain sharding  select  count(*) from lineitem group by L_ORDERKEY;
+---------------+----------------------------------+-------------+-----------+-----------+
| LOGICAL_TABLE | SHARDING | SHARD_COUNT | BROADCAST | CONDITION |
+---------------+----------------------------------+-------------+-----------+-----------+
| lineitem | [000000-000003].lineitem_[00-15] | 16 | false | |
+---------------+----------------------------------+-------------+-----------+-----------+
1 row in set (0.04 sec)
  • explain cost语句:相对于explain语句,除了展示执行计划以外,还会显示各个算子基于统计信息估算的代价,以及这条查询被优化器识别的WORKLOAD。
mysql> explain COST  select  count(*) from lineitem group by L_ORDERKEY;
+------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| LOGICAL EXECUTIONPLAN |
+------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| Project(count()="count()"): rowcount = 2508.0, cumulative cost = value = 2.4867663E7, cpu = 112574.0, memory = 88984.0, io = 201.0, net = 4.75, id = 182 |
| HashAgg(group="L_ORDERKEY", count()="SUM(count())"): rowcount = 2508.0, cumulative cost = value = 2.4867662E7, cpu = 112573.0, memory = 88984.0, io = 201.0, net = 4.75, id = 180 |
| Gather(concurrent=true): rowcount = 2508.0, cumulative cost = value = 2.4860069E7, cpu = 105039.0, memory = 29796.0, io = 201.0, net = 4.75, id = 178 |
| LogicalView(tables="[000000-000003].lineitem_[00-15]", shardCount=16, sql="SELECT `L_ORDERKEY`, COUNT() AS `count()` FROM `lineitem` AS `lineitem` GROUP BY `L_ORDERKEY`"): rowcount = 2508.0, cumulative cost = value = 2.4860068E7, cpu = 105038.0, memory = 29796.0, io = 201.0, net = 4.75, id = 109 |
| HitCache:true |
| Source:PLAN_CACHE |
| WorkloadType: TP |
| TemplateId: 5819c807
  • explain analyze语句:相对于explain cost语句,除了显示各个算子基于统计信息估算的代价以外,该语句可以收集真实运行过程中算子输出的rowCount等信息。
mysql> explain ANALYZE  select  count(*) from lineitem group by L_ORDERKEY;
+----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| LOGICAL EXECUTIONPLAN |
+----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| Project(count()="count()"): rowcount = 2508.0, cumulative cost = value = 2.4867663E7, cpu = 112574.0, memory = 88984.0, io = 201.0, net = 4.75, actual time = 0.001 + 0.000, actual rowcount = 2506, actual memory = 0, instances = 1, id = 182 |
| HashAgg(group="L_ORDERKEY", count()="SUM(count())"): rowcount = 2508.0, cumulative cost = value = 2.4867662E7, cpu = 112573.0, memory = 88984.0, io = 201.0, net = 4.75, actual time = 0.000 + 0.000, actual rowcount = 2506, actual memory = 0, instances = 1, id = 180 |
| Gather(concurrent=true): rowcount = 2508.0, cumulative cost = value = 2.4860069E7, cpu = 105039.0, memory = 29796.0, io = 201.0, net = 4.75, actual time = 0.000 + 0.000, actual rowcount = 0, actual memory = 0, instances = 0, id = 178 |
| LogicalView(tables="[000000-000003].lineitem_[00-15]", shardCount=16, sql="SELECT `L_ORDERKEY`, COUNT() AS `count()` FROM `lineitem` AS `lineitem` GROUP BY `L_ORDERKEY`"): rowcount = 2508.0, cumulative cost = value = 2.4860068E7, cpu = 105038.0, memory = 29796.0, io = 201.0, net = 4.75, actual time = 0.030 + 0.025, actual rowcount = 10000, actual memory = 0, instances = 0, id = 109 |
| HitCache:true |
| Source:PLAN_CACHE |
| TemplateId: 5819c807 |
+----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
7 rows in set (1.08 sec)
  • explain physical语句:展示查询在运行过程中执行模式、各个执行片段(Fragment)的依赖关系和并行度。该查询被识别为单机单线程计划模式(TP_LOCAL),执行计划被分为三个片段Fragment-0、Fragment-1和Fragment-2,先做预聚合再做最终的聚合计算,每个片段的执行度可以不同。
mysql> explain physical   select  count(*) from lineitem group by L_ORDERKEY;
+--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| PLAN |
+--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| ExecutorMode: TP_LOCAL |
| Fragment 0 dependency: [] parallelism: 4 |
| Gather(concurrent=true) |
| LogicalView(tables="[000000-000003].lineitem_[00-15]", shardCount=16, sql="SELECT `L_ORDERKEY`, COUNT() AS `count()` FROM `lineitem` AS `lineitem` GROUP BY `L_ORDERKEY`") |
| Fragment 1 dependency: [] parallelism: 8 |
| LocalBuffer |
| RemoteSource(sourceFragmentIds=[0], type=RecordType(INTEGER L_ORDERKEY, BIGINT count(*))) |
| Fragment 2 dependency: [0, 1] parallelism: 8 |
| Project(count()="count()") |
| HashAgg(group="L_ORDERKEY", count()="SUM(count())") |
| RemoteSource(sourceFragmentIds=[1], type=RecordType(INTEGER L_ORDERKEY, BIGINT count(*))) |
+--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
11 rows in set (0.10 sec)
  • explain advisor语句:主要是会基于统计信息,分析当前查询的执行计划,给用户推荐可以加速查询的全局二级索引。
mysql> explain advisor   select  count(*) from lineitem group by L_ORDERKEY \G;
1. row **
IMPROVE_VALUE: 4.4%
IMPROVE_CPU: 340.8%
IMPROVE_MEM: 0.0%
IMPROVE_IO: 1910.0%
IMPROVE_NET: 0.0%
BEFORE_VALUE: 2.48676627E7
BEFORE_CPU: 112573.7
BEFORE_MEM: 88983.8
BEFORE_IO: 201
BEFORE_NET: 4.7
AFTER_VALUE: 2.38256249E7
AFTER_CPU: 25536
AFTER_MEM: 88983.8
AFTER_IO: 10
AFTER_NET: 4.7
ADVISE_INDEX: ALTER TABLE `ads`.`lineitem` ADD GLOBAL INDEX `__advise_index_gsi_lineitem_L_ORDERKEY`(`L_ORDERKEY`) DBPARTITION BY HASH(`L_ORDERKEY`) TBPARTITION BY HASH(`L_ORDERKEY`) TBPARTITIONS 4;
NEW_PLAN:
Project(count()="count()")
HashAgg(group="L_ORDERKEY", count()="SUM(count())")
Gather(concurrent=true)
IndexScan(tables="[000000-000003].lineitem__what_if_gsi_L_ORDERKEY_[00-15]", shardCount=16, sql="SELECT `L_ORDERKEY`, COUNT() AS `count()` FROM `lineitem__what_if_gsi_L_ORDERKEY` AS `lineitem__what_if_gsi_L_ORDERKEY` GROUP BY `L_ORDERKEY`")
INFO: GLOBAL_INDEX
1 row in set (0.13 sec)
相关实践学习
每个IT人都想学的“Web应用上云经典架构”实战
本实验从Web应用上云这个最基本的、最普遍的需求出发,帮助IT从业者们通过“阿里云Web应用上云解决方案”,了解一个企业级Web应用上云的常见架构,了解如何构建一个高可用、可扩展的企业级应用架构。
MySQL数据库入门学习
本课程通过最流行的开源数据库MySQL带你了解数据库的世界。   相关的阿里云产品:云数据库RDS MySQL 版 阿里云关系型数据库RDS(Relational Database Service)是一种稳定可靠、可弹性伸缩的在线数据库服务,提供容灾、备份、恢复、迁移等方面的全套解决方案,彻底解决数据库运维的烦恼。 了解产品详情: https://www.aliyun.com/product/rds/mysql 
相关文章
|
Java
java: 错误: 无效的源发行版:15
java: 错误: 无效的源发行版:15
886 0
java: 错误: 无效的源发行版:15
成功解决FileNotFoundError: [WinError 2] 系统找不到指定的文件
成功解决FileNotFoundError: [WinError 2] 系统找不到指定的文件。
成功解决FileNotFoundError: [WinError 2] 系统找不到指定的文件
|
Java Python
【已解决】RuntimeError Java gateway process exited before sending its port number
【已解决】RuntimeError Java gateway process exited before sending its port number
621 0
|
缓存 网络协议 程序员
解决GitHub下载速度太慢问题的方法汇总(持续更新,建议收藏)
解决GitHub下载速度太慢问题的方法汇总(持续更新,建议收藏)
|
存储 分布式计算 资源调度
Hadoop3.0集群安装知识
Hadoop3.0集群安装知识
331 0
|
机器学习/深度学习 人工智能 算法
一篇白话机器学习概念
一篇白话机器学习概念
|
存储 XML JSON
Python基础--dict(或对象)与json之间的区别和互相转化
Python开发中字典和 json的概念与相互转化
1530 0
|
城市大脑 DataWorks 大数据
突破自我—一文看尽DataWorks全新升级以及在城市大脑的广泛应用
在2018年云栖大会·深圳峰会的专有云专场中,来自阿里云的大数据专家张辉(士诚)为现场的听众带来了题为《DataWorks全新升级以及在城市大脑的广泛应用》的技术分享。在本次分享中,士诚重点阐述DataWorks概述、DataWorks核心能力升级和DataWorks在城市大脑中的应用三个方面。
7829 0
|
分布式计算 Java MaxCompute
MaxCompute Tunnel SDK数据上传利器——BufferedWriter使用指南
MaxCompute 的数据上传接口(Tunnel)定义了数据 block 的概念:一个 block 对应一个 http request,多个 block 的上传可以并发而且是原子的,一次同步请求要么成功要么失败,不会污染其他的 block。这种设计对于服务端来讲十分简洁,但是也把记录状态做 fa.
6154 0
IDEA 禁止自动导入引用包 取消import包
http://www.oschina.net/question/2010061_226765 我想拷贝一小段代码,或者我就是不想引入拷贝来的包,我该怎么取消掉idea的自动导入import包呢? 找到下面这个选项,把这个fly取消掉
4102 0