算法系统学习-大事化小,小事化了(分而治之)

简介: 该系列是基于有一定语言基础(C,C++,Java等等)和基本的数据结构基础进行的算法学习专栏,如果觉得有点吃力 😥 ,建议先了解前提知识再学习喔!本个专栏会将用更容易理解的表达去学习算法,如果在一些表述上存在问题还请各位多多指点

分而治之算法


主要的设计思想是:将一个难以解决的大问题,分割成几个规模较小的相似问题,逐个击破。其实这个算法并不陌生,在数据结构中很常见例如:折半查找,合并排序,快速排序,二叉树遍历(先左后右),二叉树排序树的查找算法。


算法思路:

可以用一个递归过程表示,分治法就是一种大规模问题与小规模问题关系的方法,是递归设计方法的一种具体策略,分治法在每一层递归上一般分为三个步骤:

1、分解:将原问题分解为若干个规模较小,相互独立,与原问题形式相同的子问题

2、解决:若子问题规模较小而容易被解决,则直接解决,否则再继续分解成更小规模的问题,直到容易解决

3、合并:将已求解的各个子问题的解,逐步合并成原问题的解

常见分为等分分治法和非等分治法


二分法


不同于现实中对问题的分解,需要考虑问题的重点,难点,承担人员的能力等来进行问题的分解和分配,在算法设计中每次一个问题分解成的子问题个数的一般是固定的,每个子问题的规模也是平均分配的。当每次都将问题分解成原问题的一半时,称为 二分法。 (二分法是分治法较为常用分解策略,折半查找,归并排序等算法都是采用此策略实现的)

Case1:金块问题

老板有一袋金块(共n块)。最优秀的雇员得到其中的最重的一块,最差的雇员得到最轻的一块,假设有一台比较重量的仪器,请使用最少的比较次数找出最重的金块


算法分析:

比较简单的方法是逐个进行查找,先拿两块比较重量,留下重的一个与下一块比较,直到全部比较完毕,就找到了最重的金子。(类似于选择排序)


算法设计:

maxmin(float a[],int n){
  max ==min =a[1];
    for(i=2;i<=n;i++){
        if(max<a[i]){
        max=a[i];
        }else if(min>a[i]){
            min=a[i];
        }
    }
}

算法中需要n-1次比较从而得到max,

最好的情况是金块是由小到大取出的,不需要进行与min的比较,共进行n-1次比较,

最坏的情况是金块由大到小取出的,需要再经过n-1次比较得到min,共进行2n-2次比较的

至于在平均的情况下,a(i)将有一般的时间比max大,因此平均比较数是 3(n-1)/2


Case2:求数列的最大子段和(不独立子问题)

给定n个元素的整数列(可能为负整数)a1,a2....an求形如:ai,ai+1,....aj(i,j=1.....n,i<=j)的子段,使其和为最大。当所有整数均为负整数时定义其最大子段和为0。例如当(a1,a2,a3,a4,a5,a6)=(-2,11,-4,13,-5,-2)时,最大子段和为i=2,j=4(下标从1开始)

问题分析:


若用二分法将实例中的数据分解成两组(-2,11,-4)和(13,-5,-2),第一个子问题的解是11,第二个子问题的解是13,两个子问题的解不能简单地得到问题的解。由此看出这个问题不能用二分法分解成为独立的两个子问题,子问题中间还有公共的子问题,这类问题称为子问题重叠类的问题。那么,怎样解决这类问题呢?(不独立子问题)

算法分析:

分解方法还是用二分法,虽然分解后的子问题并不独立,但通过对重叠的子问题进行专门处理,并对所有的问题合并进行设计,就可以用二分法策略解决问题。

如果将所给的序列a【1:n】分为长度相等的两段a【1 :(n/2)】和a【(n/2)+1:n】分别求出这两段的最大子段和,则a【1:n】的最大子段和有三种情形:

  1. a【1:n】的最大子段和与a[1:(n/2)]的最大子段和相同
  2. a【1:n】的最大子段和与a[(n/2)+1:n]的最大子段和相同
  3. a【1:n】的最大子段和与a[i:j],且1≤i≤(n/2), (n/2)+1≤j≤n;

对于情况1,2可分别递归求得。但是对于情况3,a[(n/2)] 和a[(n/2)+1]一定在最优的子序列中,因此可得a[i:(n/2)]的最大值s1,并计算出a[(n/2)+1:j]中的最大值s2,则情况3的最优值为 s1+s2

算法设计:

int max_sum3 (int a[],int n)
{
return (max_sub_sum (a,1,n));
}
max_sub_sum(int a [],int left,int right){
int center,i,j,sum,left_sum,right_sum,s1,s2,lefts,rights;
    if(left =right){
      if(a[left]>0){
            return(a[left]);
      }else{
        return (0);
        }
    }else{
    center =(left +right )/2;
        left_sum=max_sub_sum(a,left,center);
        right_sum=max_sub_sum(a,center+1,right);
        s1=0;
        lefts=0;
        for(i=center;i>=left;i--){
            { lefts=lefts+a[i];
              if(lefts>s1){
                s1=lefts;
                }
            }
        s2=0;righs=0;
        for(i=center+1;i<=right;i++){
            rights=rights+a[i];
              if(rights>s2){
                    s2=rights;
                }
        }
        }
        if(s1+s2<left_sum and right_sum <left_sum){
            return(left_sum);
        }      
        if(s1+s2<right ){
            return(right_sum);
        }
        return (s1+s2);
    }
}


目录
相关文章
|
2月前
|
算法 搜索推荐 JavaScript
基于python智能推荐算法的全屋定制系统
本研究聚焦基于智能推荐算法的全屋定制平台网站设计,旨在解决消费者在个性化定制中面临的选择难题。通过整合Django、Vue、Python与MySQL等技术,构建集家装设计、材料推荐、家具搭配于一体的一站式智能服务平台,提升用户体验与行业数字化水平。
|
2月前
|
算法
基于MPPT算法的光伏并网发电系统simulink建模与仿真
本课题基于MATLAB/Simulink搭建光伏并网发电系统模型,集成PV模块、MPPT算法、PWM控制与并网电路,实现最大功率跟踪与电能高效并网。通过仿真验证系统在不同环境下的动态响应与稳定性,采用SVPWM与电流闭环控制,确保输出电流与电网同频同相,满足并网电能质量要求。
|
3月前
|
数据采集 边缘计算 算法
遗传算法+多目标规划算法+自适应神经模糊系统(Matlab代码实现)
遗传算法+多目标规划算法+自适应神经模糊系统(Matlab代码实现)
126 4
|
4月前
|
机器学习/深度学习 算法 数据挖掘
没发论文的注意啦!重磅更新!GWO-BP-AdaBoost预测!灰狼优化、人工神经网络与AdaBoost集成学习算法预测研究(Matlab代码实现)
没发论文的注意啦!重磅更新!GWO-BP-AdaBoost预测!灰狼优化、人工神经网络与AdaBoost集成学习算法预测研究(Matlab代码实现)
174 0
|
3月前
|
机器学习/深度学习 传感器 算法
【无人车路径跟踪】基于神经网络的数据驱动迭代学习控制(ILC)算法,用于具有未知模型和重复任务的非线性单输入单输出(SISO)离散时间系统的无人车的路径跟踪(Matlab代码实现)
【无人车路径跟踪】基于神经网络的数据驱动迭代学习控制(ILC)算法,用于具有未知模型和重复任务的非线性单输入单输出(SISO)离散时间系统的无人车的路径跟踪(Matlab代码实现)
240 2
|
3月前
|
机器学习/深度学习 运维 算法
【微电网多目标优化调度】多目标学习者行为优化算法MOLPB求解微电网多目标优化调度研究(Matlab代码实现)
【微电网多目标优化调度】多目标学习者行为优化算法MOLPB求解微电网多目标优化调度研究(Matlab代码实现)
236 1
|
3月前
|
机器学习/深度学习 自然语言处理 算法
基于改进鲸鱼优化算法的微网系统能量优化管理研究(Matlab代码实现)
基于改进鲸鱼优化算法的微网系统能量优化管理研究(Matlab代码实现)
126 1
|
3月前
|
机器学习/深度学习 算法 算法框架/工具
256KB内存约束下的设备端训练:算法与系统协同设计——论文解读
MIT与MIT-IBM Watson AI Lab团队提出一种创新方法,在仅256KB SRAM和1MB Flash的微控制器上实现深度神经网络训练。该研究通过量化感知缩放(QAS)、稀疏层/张量更新及算子重排序等技术,将内存占用降至141KB,较传统框架减少2300倍,首次突破设备端训练的内存瓶颈,推动边缘智能发展。
271 6
|
4月前
|
机器学习/深度学习 边缘计算 算法
【状态估计】基于LMS类自适应滤波算法、NLMS 和 LMF 进行系统识别比较研究(Matlab代码实现)
【状态估计】基于LMS类自适应滤波算法、NLMS 和 LMF 进行系统识别比较研究(Matlab代码实现)
168 3
|
3月前
|
机器学习/深度学习 存储 算法
基于模型预测算法的混合储能微电网双层能量管理系统研究(Matlab代码实现)
基于模型预测算法的混合储能微电网双层能量管理系统研究(Matlab代码实现)
123 0

热门文章

最新文章