Python进阶系列(一)

简介: Python进阶系列(一)

**使用 *args 和 kwargs 来调用函数


那现在我们将看到怎样使用*args和**kwargs 来调用一个函数。 假设,你有这样一个小函数:

def test_args_kwargs(arg1, arg2, arg3):
    print("arg1:", arg1)
    print("arg2:", arg2)
    print("arg3:", arg3)
复制代码

你可以使用*args或**kwargs来给这个小函数传递参数。 下面是怎样做:

# 首先使用 *args
args = ("two", 3, 5)
test_args_kwargs(*args)
复制代码
# 现在使用 **kwargs:
kwargs = {"arg3": 3, "arg2": "two", "arg1": 5}
test_args_kwargs(**kwargs)
复制代码

标准参数与*args、**kwargs在使用时的顺序

那么如果你想在函数里同时使用所有这三种参数, 顺序是这样的:

some_func(fargs, *args, **kwargs)
复制代码

什么时候使用它们?


这还真的要看你的需求而定。

最常见的用例是在写函数装饰器的时候(会在另一章里讨论)。

此外它也可以用来做猴子补丁(monkey patching)。猴子补丁的意思是在程序运行时(runtime)修改某些代码。

打个比方,你有一个类,里面有个叫get_info的函数会调用一个API并返回相应的数据。如果我们想测试它,可以把API调用替换成一些测试数据。例

如:

import someclass
def get_info(self, *args):
    return "Test data"
someclass.get_info = get_info
复制代码

我敢肯定你也可以想象到一些其他的用例。

生成器(Generators)


首先我们要理解迭代器(iterators)。根据维基百科,迭代器是一个让程序员可以遍历一个容器(特别是列表)的对象。然而,一个迭代器在遍历并读取一个容器的数据元素时,并不会执行一个迭代。你可能有点晕了,那我们来个慢动作。换句话说这里有三个部分:

可迭代对象(Iterable)

迭代器(Iterator)

迭代(Iteration)

上面这些部分互相联系。我们会先各个击破来讨论他们,然后再讨论生成器(generators).

可迭代对象(Iterable)


Python中任意的对象,只要它定义了可以返回一个迭代器的__iter__方法,或者定义了可以支持下标索引的__getitem__方法(这些双下划线方法会在其他章节中全面解释),那么它就是一个可迭代对象。简单说,可迭代对象就是能提供迭代器的任意对象。那迭代器又是什么呢?

迭代器(Iterator)


任意对象,只要定义了next(Python2) 或者__next__方法,它就是一个迭代器。就这么简单。现在我们来理解迭代(iteration)

迭代(Iteration)


用简单的话讲,它就是从某个地方如一个列表)取出一个元素的过程。当我们使用一个循环来遍历某个东西时,这个过程本身就叫迭代。现在既然我们有了这些术语的基本理解,那我们开始理解生成器吧。

生成器(Generators)


生成器也是一种迭代器,但是你只能对其迭代一次。这是因为它们并没有把所有的值存在内存中,而是在运行时生成值。你通过遍历来使用它们,要么用一个“for”循环,要么将它们传递给任意可以进行迭代的函数和结构。大多数时候生成器是以函数来实现的。然而,它们并不返回一个值,而是yield(暂且译作“生出”)一个值。这里有个生成器函数的简单例子:

def generator_function():
    for i in range(10):
        yield i
for item in generator_function():
    print(item)
复制代码

这个案例并不是非常实用。生成器最佳应用场景是:你不想同一时间将所有计算出来的大量结果集分配到内存当中,特别是结果集里还包含循环。

译者注:这样做会消耗大量资源

许多Python 2里的标准库函数都会返回列表,而Python 3都修改成了返回生成器,因为生成器占用更少的资源。

下面是一个计算斐波那契数列的生成器:

# generator version
def fibon(n):
    a = b = 1
    for i in range(n):
        yield a
        a, b = b, a + b
# Now we can use it like this
for x in fibon(1000000):
    print(x)
复制代码

用这种方式,我们可以不用担心它会使用大量资源。然而,之前如果我们这样来实现的话:

def fibon(n):
    a = b = 1
    result = []
    for i in range(n):
        result.append(a)
        a, b = b, a + b
    return result
复制代码

这也许会在计算很大的输入参数时,用尽所有的资源。我们已经讨论过生成器使用一次迭代,但我们并没有测试过。在测试前你需要再知道一个Python内置函数:next()。它允许我们获取一个序列的下一个元素。那我们来验证下我们的理解:

def generator_function():
    for i in range(3):
        yield i
gen = generator_function()
print(next(gen))
# Output: 0
print(next(gen))
# Output: 1
print(next(gen))
# Output: 2
print(next(gen))
# Output: Traceback (most recent call last):
#           File "<stdin>", line 1, in <module>
#           StopIteration
复制代码

我们可以看到,在yield掉所有的值后,next()触发了一个StopIteration的异常。基本上这个异常告诉我们,所有的值都已经被yield完了。你也许会奇怪,为什么我们在使用for循环时没有这个异常呢?啊哈,答案很简单。for循环会自动捕捉到这个异常并停止调用next()。你知不知道Python中一些内置数据类型也支持迭代哦?我们这就去看看:

my_string = "Yasoob"
next(my_string)
# Output: Traceback (most recent call last):
#       File "<stdin>", line 1, in <module>
#       TypeError: str object is not an iterator
复制代码

好吧,这不是我们预期的。这个异常说那个str对象不是一个迭代器。对,就是这样!它是一个可迭代对象,而不是一个迭代器。这意味着它支持迭代,但我们不能直接对其进行迭代操作。那我们怎样才能对它实施迭代呢?是时候学习下另一个内置函数,iter。它将根据一个可迭代对象返回一个迭代器对象。这里是我们如何使用它:

my_string = "Yasoob"
my_iter = iter(my_string)
next(my_iter)
# Output: 'Y'
复制代码

现在好多啦。我肯定你已经爱上了学习生成器。一定要记住,想要完全掌握这个概念,你只有使用它。确保你按照这个模式,并在生成器对你有意义的任何时候都使用它。你绝对不会失望的!


作者:zhulin1028

著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

相关文章
|
6月前
|
数据采集 网络协议 数据挖掘
网络爬虫进阶之路:深入理解HTTP协议,用Python urllib解锁新技能
【7月更文挑战第30天】网络爬虫是数据分析和信息聚合的关键工具。深入理解HTTP协议及掌握Python的urllib库对于高效爬虫开发至关重要。HTTP协议采用请求/响应模型,具有无状态性、支持多种请求方法和内容协商等特点。
64 3
|
6月前
|
网络协议 开发者 Python
网络编程小白秒变大咖!Python Socket基础与进阶教程,轻松上手无压力!
【7月更文挑战第25天】在网络技术快速发展的背景下, Python因其简洁的语法和强大的库支持成为学习网络编程的理想选择。
86 5
|
6月前
|
机器学习/深度学习 数据采集 算法
Python编程语言进阶学习:深入探索与高级应用
【7月更文挑战第23天】Python的进阶学习是一个不断探索和实践的过程。通过深入学习高级数据结构、面向对象编程、并发编程、性能优化以及在实际项目中的应用,你将能够更加熟练地运用Python解决复杂问题,并在编程道路上走得更远。记住,理论知识只是基础,真正的成长来自于不断的实践和反思。
|
6月前
|
开发者 Python
Python Socket编程:不只是基础,更有进阶秘籍,让你的网络应用飞起来!
【7月更文挑战第25天】在网络应用蓬勃发展的数字时代,Python凭借其简洁的语法和强大的库支持成为开发高效应用的首选。本文通过实时聊天室案例,介绍了Python Socket编程的基础与进阶技巧,包括服务器与客户端的建立、数据交换等基础篇内容,以及使用多线程和异步IO提升性能的进阶篇。基础示例展示了服务器端监听连接请求、接收转发消息,客户端连接服务器并收发消息的过程。进阶部分讨论了如何利用Python的`threading`模块和`asyncio`库来处理多客户端连接,提高应用的并发处理能力和响应速度。掌握这些技能,能使开发者在网络编程领域更加游刃有余,构建出高性能的应用程序。
42 3
|
6月前
|
网络协议 Python
网络世界的建筑师:Python Socket编程基础与进阶,构建你的网络帝国!
【7月更文挑战第26天】在网络的数字宇宙中,Python Socket编程是开启网络世界大门的钥匙。本指南将引领你从基础到实战,成为网络世界的建筑师。
73 2
|
6月前
|
SQL 安全 Go
SQL注入不可怕,XSS也不难防!Python Web安全进阶教程,让你安心做开发!
【7月更文挑战第26天】在 Web 开发中, SQL 注入与 XSS 攻击常令人担忧, 但掌握正确防御策略可化解风险. 对抗 SQL 注入的核心是避免直接拼接用户输入至 SQL 语句. 使用 Python 的参数化查询 (如 sqlite3 库) 和 ORM 框架 (如 Django, SQLAlchemy) 可有效防范. 防范 XSS 攻击需严格过滤及转义用户输入. 利用 Django 模板引擎自动转义功能, 或手动转义及设置内容安全策略 (CSP) 来增强防护. 掌握这些技巧, 让你在 Python Web 开发中更加安心. 安全是个持续学习的过程, 不断提升才能有效保护应用.
65 1
|
6月前
|
存储 算法 搜索推荐
算法进阶之路:Python 归并排序深度剖析,让数据排序变得艺术起来!
【7月更文挑战第12天】归并排序是高效稳定的排序算法,采用分治策略。Python 实现包括递归地分割数组及合并已排序部分。示例代码展示了如何将 `[12, 11, 13, 5, 6]` 分割并归并成有序数组 `[5, 6, 11, 12, 13]`。虽然 $O(n log n)$ 时间复杂度优秀,但需额外空间,适合大规模数据排序。对于小规模数据,可考虑其他算法。**
86 4
|
6月前
|
算法 Python
Python算法高手进阶指南:分治法、贪心算法、动态规划,掌握它们,算法难题迎刃而解!
【7月更文挑战第10天】探索Python算法的精华:分治法(如归并排序)、贪心策略(如找零钱问题)和动态规划(解复杂问题)。通过示例代码揭示它们如何优化问题解决,提升编程技能。掌握这些策略,攀登技术巅峰。
156 2
|
7月前
|
开发者 Python
Python进阶:深入剖析闭包与装饰器的应用与技巧
Python进阶:深入剖析闭包与装饰器的应用与技巧
|
7月前
|
分布式计算 算法 Python
Python函数进阶:四大高阶函数、匿名函数、枚举、拉链与递归详解
Python函数进阶:四大高阶函数、匿名函数、枚举、拉链与递归详解