开发指南—SQL调优指南—SQL调优进阶—子查询优化和执行

简介: 子查询是指在父查询的WHERE子句或HAVING子句中嵌套另一个SELECT语句的查询,本文主要介绍如何子查询。

基本概念

根据是否存在关联项,子查询可以分为非关联子查询和关联子查询。非关联子查询是指该子查询的执行不依赖外部查询的变量,这种子查询一般只需要计算一次;而关联子查询中存在引用自外层查询的变量,逻辑上,这种子查询需要每次带入相应的变量、计算多次。


/* 例子:非关联子查询 */
SELECT * FROM lineitem WHERE l_partkey IN (SELECT p_partkey FROM part);
/* 例子:关联子查询(l_suppkey 是关联项) */
SELECT * FROM lineitem WHERE l_partkey IN (SELECT ps_partkey FROM partsupp WHERE ps_suppkey = l_suppkey);

PolarDB-X子查询支持绝大多数的子查询写法,具体参见SQL使用限制

子查询执行

对于多数常见的子查询形式,PolarDB-X可以将其改写为高效的SemiJoin或类似的基于JOIN的计算方式。这样做的好处是显而易见的。当数据量较大时,无需真正带入不同参数循环迭代,大大降低了执行代价。这种查询改写技术称为子查询的去关联化(Unnesting)。

如下示例中2个子查询去关联化可以看到执行计划中使用JOIN代替了子查询。


> EXPLAIN SELECT p_partkey, (

SELECT COUNT(ps_partkey) FROM partsupp WHERE ps_suppkey = p_partkey
) supplier_count FROM part;
Project(p_partkey="p_partkey", supplier_count="CASE(IS NULL($10), 0, $9)", cor=[$cor0])
HashJoin(condition="p_partkey = ps_suppkey", type="left")
Gather(concurrent=true)
LogicalView(tables="part_[0-7]", shardCount=8, sql="SELECT * FROM `part` AS `part`")
Project(count(ps_partkey)="count(ps_partkey)", ps_suppkey="ps_suppkey", count(ps_partkey)2="count(ps_partkey)")
HashAgg(group="ps_suppkey", count(ps_partkey)="SUM(count(ps_partkey))")
Gather(concurrent=true)
LogicalView(tables="partsupp_[0-7]", shardCount=8, sql="SELECT `ps_suppkey`, COUNT(`ps_partkey`) AS `count(ps_partkey)` FROM `partsupp` AS `partsupp` GROUP BY `ps_suppkey`")


> EXPLAIN SELECT p_partkey, (
SELECT COUNT(ps_partkey) FROM partsupp WHERE ps_suppkey = p_partkey
) supplier_count FROM part;
Project(p_partkey="p_partkey", supplier_count="CASE(IS NULL($10), 0, $9)", cor=[$cor0])
HashJoin(condition="p_partkey = ps_suppkey", type="left")
Gather(concurrent=true)
LogicalView(tables="part_[0-7]", shardCount=8, sql="SELECT * FROM `part` AS `part`")
Project(count(ps_partkey)="count(ps_partkey)", ps_suppkey="ps_suppkey", count(ps_partkey)2="count(ps_partkey)")
HashAgg(group="ps_suppkey", count(ps_partkey)="SUM(count(ps_partkey))")
Gather(concurrent=true)
LogicalView(tables="partsupp_[0-7]", shardCount=8, sql="SELECT `ps_suppkey`, COUNT(`ps_partkey`) AS `count(ps_partkey)` FROM `partsupp` AS `partsupp` GROUP BY `ps_suppkey`")

某些场景下,PolarDB-X无法将子查询进行去关联化,这时会采用迭代执行的方式。如果外层查询数据量很大,迭代执行可能会非常慢。

如下示例由于OR l_partkey < 50的存在,导致子查询无法被去关联化,因而采用了迭代执行:


> EXPLAIN SELECT * FROM lineitem WHERE l_partkey IN (SELECT ps_partkey FROM partsupp WHERE ps_suppkey = l_suppkey) OR l_partkey IS NOT
Filter(condition="IS(in,[$1])[29612489] OR l_partkey < ?0")
Gather(concurrent=true)
LogicalView(tables="QIMU_0000_GROUP,QIMU_0001_GROUP.lineitem_[0-7]", shardCount=8, sql="SELECT * FROM `lineitem` AS `lineitem`")
>> individual correlate subquery : 29612489
Gather(concurrent=true)
LogicalView(tables="QIMU_0000_GROUP,QIMU_0001_GROUP.partsupp_[0-7]", shardCount=8, sql="SELECT * FROM (SELECT `ps_partkey` FROM `partsupp` AS `partsupp` WHERE (`ps_suppkey` = `l_suppkey`)) AS `t0` WHERE (((`l_partkey` = `ps_partkey`) OR (`l_partkey` IS NULL)) OR (`ps_partkey` IS NULL))")

这种情形下,建议改写SQL去掉子查询的OR条件。

相关文章
|
2月前
|
SQL 存储 监控
SQL日志优化策略:提升数据库日志记录效率
通过以上方法结合起来运行调整方案, 可以显著地提升SQL环境下面向各种搜索引擎服务平台所需要满足标准条件下之数据库登记作业流程综合表现; 同时还能确保系统稳健运行并满越用户体验预期目标.
215 6
|
9月前
|
SQL 运维 监控
SQL查询太慢?实战讲解YashanDB SQL调优思路
本文是Meetup第十期“调优实战专场”的第二篇技术文章,上一篇《高效查询秘诀,解码YashanDB优化器分组查询优化手段》中,我们揭秘了YashanDB分组查询优化秘诀,本文将通过一个案例,助你快速上手YashanDB慢日志功能,精准定位“慢SQL”后进行优化。
|
6月前
|
SQL 关系型数据库 PostgreSQL
CTE vs 子查询:深入拆解PostgreSQL复杂SQL的隐藏性能差异
本文深入探讨了PostgreSQL中CTE(公共表表达式)与子查询的选择对SQL性能的影响。通过分析两者底层机制,揭示CTE的物化特性及子查询的优化融合优势,并结合多场景案例对比执行效率。最终给出决策指南,帮助开发者根据数据量、引用次数和复杂度选择最优方案,同时提供高级优化技巧和版本演进建议,助力SQL性能调优。
632 1
|
7月前
|
SQL 存储 自然语言处理
SQL的解析和优化的原理:一条sql 执行过程是什么?
SQL的解析和优化的原理:一条sql 执行过程是什么?
SQL的解析和优化的原理:一条sql 执行过程是什么?
|
8月前
|
SQL 关系型数据库 MySQL
大数据新视界--大数据大厂之MySQL数据库课程设计:MySQL 数据库 SQL 语句调优方法详解(2-1)
本文深入介绍 MySQL 数据库 SQL 语句调优方法。涵盖分析查询执行计划,如使用 EXPLAIN 命令及理解关键指标;优化查询语句结构,包括避免子查询、减少函数使用、合理用索引列及避免 “OR”。还介绍了索引类型知识,如 B 树索引、哈希索引等。结合与 MySQL 数据库课程设计相关文章,强调 SQL 语句调优重要性。为提升数据库性能提供实用方法,适合数据库管理员和开发人员。
|
8月前
|
关系型数据库 MySQL 大数据
大数据新视界--大数据大厂之MySQL 数据库课程设计:MySQL 数据库 SQL 语句调优的进阶策略与实际案例(2-2)
本文延续前篇,深入探讨 MySQL 数据库 SQL 语句调优进阶策略。包括优化索引使用,介绍多种索引类型及避免索引失效等;调整数据库参数,如缓冲池、连接数和日志参数;还有分区表、垂直拆分等其他优化方法。通过实际案例分析展示调优效果。回顾与数据库课程设计相关文章,强调全面认识 MySQL 数据库重要性。为读者提供综合调优指导,确保数据库高效运行。
|
9月前
|
SQL 数据库 数据安全/隐私保护
SQL查询优化:where子句的高效使用方式
总的来说,如果将 SQL 查询比喻为一个乐团的演奏,WHERE 子句就像是独奏者,它需要各位乐手的协助,才能发挥出最美妙的音乐。计划好你的演奏,挑选对的音符,在最适当的时间开始演奏,那么,你可以更高效地运用 SQL 查询,更好地把握数据的篇章。
206 19
|
9月前
|
SQL 关系型数据库 MySQL
如何优化SQL查询以提高数据库性能?
这篇文章以生动的比喻介绍了优化SQL查询的重要性及方法。它首先将未优化的SQL查询比作在自助餐厅贪多嚼不烂的行为,强调了只获取必要数据的必要性。接着,文章详细讲解了四种优化策略:**精简选择**(避免使用`SELECT *`)、**专业筛选**(利用`WHERE`缩小范围)、**高效联接**(索引和限制数据量)以及**使用索引**(加速搜索)。此外,还探讨了如何避免N+1查询问题、使用分页限制结果、理解执行计划以及定期维护数据库健康。通过这些技巧,可以显著提升数据库性能,让查询更高效流畅。
|
9月前
|
SQL 数据库 数据安全/隐私保护
SQL查询优化:where子句的高效使用方式。
总的来说,如果将 SQL 查询比喻为一个乐团的演奏,WHERE 子句就像是独奏者,它需要各位乐手的协助,才能发挥出最美妙的音乐。计划好你的演奏,挑选对的音符,在最适当的时间开始演奏,那么,你可以更高效地运用 SQL 查询,更好地把握数据的篇章。
146 13