发现算法之美-时间复杂度

简介: 发现算法之美-时间复杂度

image.png


正式工作也有3年的时间了,想要写出更加优雅的代码。

所以最近在刷leetcode补充数据结构和算法方面的知识。


学校里虽然学过,但是仅仅是有个大概的认识。只有实际工作过几年以后,才会明白数据结构和算法的重要性。


如果是通信专业出身的同学,或者是硬件出身的同学一定知道:对于一个信号,我们可以从时域和频域两个方面去分析。


那么计算机科学或者说软件开发中的算法怎么去分析呢?


有两个衡量优劣的维度:时间复杂度和空间复杂度。

  • 时间复杂度:执行当前算法所消耗的'时间'。
  • 空间复杂度:执行当前算法所占用的内存。


在这边博文中,我们来好好分析一下时间复杂度。

  • 时间复杂度真的是计算'时间'吗?
  • 时间复杂度公式:大O符号表示法
  • 常见时间复杂度类型及代码分析
  • 常数型O(1)
  • 对数型O(log n)
  • 线性型O(n)
  • 线性对数型O(n log n)
  • 平方型O(n^2)、立方型O(n^3)、K次方型O(n^k)
  • 平方底指数型O(2^n)、立方底指数型O(3^n)、K次底指数型O(k^n)
  • 阶乘型O(n!)
  • 如何理解斐波那契数列的时间复杂度O(2^N)?
  • 如何理解阶乘型时间复杂度O(n!)?
  • 参考资料


时间复杂度真的是计算'时间'吗?


把算法的执行时间当做时间复杂度?

这种方式是最为直观也是最容易想到的方式。


但是有一个问题,那就是代码在不同性能的机器上运行,以及在不同的状态下运行,会呈现出完全不同的运行时间。


比如说我有一台内存为32GB内存的mbp,还有一台8GB的台式机,假设其它的硬件条件比如cpu,主板以及机器负载状态一致。通常情况下,32GB的内存要比8GB的内存运行更快。而且这种理想状态下的只有单一变量的状态也是很难做到的。

所以不能通过计算算法的消耗时间作为时间复杂度。


那我们通常所说的'时间'复杂度中的'时间'到底是指什么呢?


聪明的前辈们想到了一种方式:大O表示法。


大O表示法内部有非常复杂的数学计算逻辑,我们偷个懒,不去证明公式,把公式用好就很厉害了。


为什么不去证明一下或者演算一遍?


我在大一曾经上过一门叫做高等代数的课,有道题目叫做:请证明1+1=2

看到这个题目应该知道为什么不深究大O表示法背后的数学了吧。


时间复杂度公式:大O符号表示法


T(n) = O(f(n))

  • f(n)是指每行代码执行次数之和
  • f(n)可以是这些值:1,log n,n,nlog n,n^2,n^3,n^k,2^n,n!
  • f(n)与O正相关
  • O(f(n))可以是这些值:O(1),O(log n),O(n),O(nlog n),O(n^2),O(n^3),O(n^k),O(2^n),O(n!)
  • 大O表示法实际表示的是代码执行时间的增长变化趋势,不是真实的运行时间,是一种趋势预估
  • 大O表示法中的f(n)是近似值。很多时候不会完全是1,log n,n,nlog n,n^2,n^3,n^k,2^n,n!这些完整的值。例如斐波那契数列的真实时间复杂度为O(2^N-1),由于N->∞,所以可以近似为O(2^N)。
    更多的斐波那契数列时间复杂度的分析可以查看下文中的:如何理解斐波那契数列的时间复杂度O(2^N)?


常见时间复杂度类型及代码分析


理论扯了一大堆了,到精彩绝伦的Show me the code环节了。

先来看一张大O复杂度曲线图。



以下时间复杂度根据最佳->较好->一般->较差->糟糕的顺序排列。

  • 常数型O(1)
  • 对数型O(log n)
  • 线性型O(n)
  • 线性对数型O(n log n)
  • 平方型O(n^2)、立方型O(n^3)、K次方型O(n^k)
  • 平方底指数型O(2^n)、立方底指数型O(3^n)、K次底指数型O(k^n)
  • 阶乘型O(n!)


常数型O(1)

  • 常见于赋值和引用等简单操作
  • 算法消耗不随变量增长而增长,性能最佳
  • 无论代码执行多少行,即使有几千几万行,时间复杂度都为O(1)
  • 实际开发过程中,一次递归的时间复杂度也为O(1)。因为O(1^n)无论n为多少都为O(1)

let i = 0;
let j = 9;
i++;
j--;
let k = i + j;
  • 代码分析:
    i为1,j为10,k为11。
    时间复杂度为O(1)。


对数型O(log n)

  • 常用代码执行次数为x,n为目标数字。符合2^x=n,推导出x=log2(n)(log n)的情况
  • 算法消耗随n的增长而增长,性能较好
let n = 100;
let i = 1;
while(i<n){
  i = i * 2
}
  • 代码分析:
    i为128。
    n为100,时间复杂度为O(log2(100))。
    因为Math.log2(100)≈6.64,所以最终的时间复杂度为O(6.65)。


线性型O(n)

  • 常见于一次for循环,while循环
  • 算法消耗随n的增长而增长,性能一般
  • 无论n值有多大,即使是Inifinity,时间复杂度都为O(n)
let n = 100;
let j = 0;
for(let i = 0;i<n;i++){
  j = i;
}
  • 代码分析:
    i为100,j为99。
    n为100,时间复杂度为O(100)。

线性对数型O(n log n)

  • 常用于一个对时间复杂度为O(log2(n))的代码执行一个n次循环
  • 算法消耗随n的增长而增长,性能较差
let n = 100;
for(let m = 0; m<n; m++){
  let i = 1;
  while(i<n){
      i = i * 2
  }
}
  • 代码分析:
    i为128。
    m为100,n为100,时间复杂度为O(m log2(n))。
    因为100* Math.log2(100)≈664.39,所以最终的时间复杂度为O(664.39)。


平方型O(n^2)、立方型O(n^3)、K次方型O(n^k)

  • 最常见的算法时间复杂度,可用于快速开发业务逻辑
  • 常见于2次for循环,或者3次for循环,以及k次for循环
  • 算法消耗随n的增长而增长,性能糟糕
  • 实际开发过程中,不建议使用K值过大的循环,否则代码将非常难以维护
let n = 100
let v = 0;
for(let i =0;i<n;i++){
  for(let j = 0; j<n; j++){
      v = v+j+i;
  }
}
  • 代码分析:
    v为990000,i为100,j为100.
    n为100,时间复杂度为O(100^2)。
    也就是O(10000)。


立方型O(n^3)、K次方型O(n^k)和平方型O(n^2)类似,无非是多了几次循环。

// 立方型O(n^3)
for(let i =0;i<n;i++){
    for(let j = 0; j<n; j++){
        for(let m = 0; m<n; m++){
        }
    }
}
// K次方型O(n^k)
for(let i =0;i<n;i++){
    for(let j = 0; j<n; j++){
        for(let m = 0; m<n; m++){
            for(let p = 0; p<n; p++){
                ... // for循环继续嵌套下去,k值不断增大
            }
        }
    }
}

平方底指数型O(2^n)、立方底指数型O(3^n)、K次底指数型O(k^n)


  • 常见于2次递归的情况,3次递归以及k次递归的情况
  • 算法消耗随n的增长而增长,性能糟糕
  • 实际开发过程中,k为1时,一次递归的时间复杂度为O(1)。因为O(1^n)无论n为多少都为O(1)。


斐波那契数列(兔子数列、黄金分割数列):1、1、2、3、5、8、13、21、34···

题目:leetcode 509 斐波那契数

题解:[509.斐波那契数列 (Fibonacci Number)]https://github.com/FrankKai/l...)


/**
 * @param {number} N
 * @return {number}
 */
var fib = function (N) {
  /**
   * 解法1: 递归
   * 性能:  88ms 34.2MB
   * 时间复杂度:O(2^N)
   */
  if (N <= 1) return N;
  return fib(N - 1) + fib(N - 2);
};

假设N等于100。

代码分析:

结果为 xxx。

因为浏览器直接卡死。nodejs中也运行不出来

具体原因则是2的100次方真的太大了。算不来。

N为100,时间复杂度为O(2^100)。


因为Math.pow(2, 100)= 1.2676506002282294e+30,所以最终的时间复杂度为O(1.2676506002282294e+30)。大到爆表。


立方底指数型O(3^n)、K次底指数型O(k^n)与平方底指数型O(2^n)类似,只不过基数变为了3和k。

O(Math.pow(3, n))
O(Math.pow(k, n))


假设n为100,假设k为5。

Math.pow(3, n)为5.153775207320113e+47。

Math.pow(5, n)为7.888609052210118e+69。


时间复杂度也是巨高,真的是指数爆炸?。


更多的斐波那契数列时间复杂度O(2^N)的分析可以查看下文中的:如何理解斐波那契数列的时间复杂度O(2^N)?


阶乘型O(n!)


  • 极其不常见
  • 算法消耗随n的增长而增长,性能糟糕
function nFacRuntimeFunc(n) {
  for(let i=0; i<n; i++) {
      nFacRuntimeFunc(n-1);
  }
}

阶乘型O(n!)的时间复杂度按照(n!+(n-1)!+(n-2)!+ ··· + 1) +((n-1)!+(n-2)!+ ··· + 1)+ ··· 的方式去计算。

注意哦,这里是多个阶乘的和。不仅仅是n * (n-1) * (n-2) * (n-3)···1。

假设n从0到10,它的算法复杂度O(n!)依次为1,4,15,64,325,1956,13699,109600,986409,9864100···

为了和上文中的其它算法复杂度做比较,n为100时是多少呢?

**O(2^n)为10才是1024,n为100时O(2^n)直接浏览器卡死了。

O(n!)才为10就接近1000万了,真要是n设置成100,计算到机器烧了也计算不出吧。**

所以n为100时的O(n!)就不要想了,庞大到恐怖的一个数字。

更多的阶乘型时间复杂度O(n!)的分析可以查看下文中的:如何理解阶乘型算法复杂度O(n!)?


如何理解斐波那契数列的时间复杂度O(2^N)?


O(2^N)

  • Math.pow(base, ex),2个递归所以base是2。
  • N的话是因为N->∞,但其实真正是O(2^(N-1))。
/**
 * @param {number} N
 * @return {number}
 */
var fib = function (N) {
  /**
   * 解法1: 递归
   * 性能:  88ms 34.2MB
   */
  console.log('foo');
  if (N <= 1) return N;
  return fib(N - 1) + fib(N - 2)
};
N 打印foo数 O(2^N)
1 1 O(2^0)
2 2^1 + 1 O(2^1)
3 2^2 + 1 O(2^2 )
4 2^3 + 1 O(2^3 )
5 2^4 + 1 O(2^4 )

通过上表我们分析得到:


如果包含1的话,严格来讲时间复杂度是O(2^(N-1))。

如果从N>1开始计算,时间复杂度确实是O(2^N)。


斐波那契数列非常长,N->∞,因此可以将斐波那契数列的时间复杂度直接看做是O(2^N)。


如何理解阶乘型时间复杂度O(n!)?


O(N!)

我们把上面的代码改造一下,增加一个count用来统计O(n!)。

let count = 0;
function nFacRuntimeFunc(n) {
  for(let i=0; i<n; i++) {
      count++;
      nFacRuntimeFunc(n-1);
  }
}

阶乘型O(n!)的时间复杂度按照(n!+(n-1)!+(n-2)!+ ··· + 1) +((n-1)!+(n-2)!+ ··· + 1) 的方式去计算。

注意哦,这里是多个阶乘的和。不仅仅是n * (n-1) * (n-2) * (n-3)···1。

上述示例中的count即为复杂度的值。

n 多次n! + (n-1)! + ··· + 1! count O(n!)
1 1 1 O(1)
2 (2!+1!) +(1!) 4 O(4)
3 (3!+(2!+1!)+1!)+((2!+1!)+1!)+(1!) 15 O(15)
4 ... 64 O(64)
5 ... 325 O(325)
6 ... 1956 O(1956)
7 ... 13699 O(13699)
8 ... 109600 O(109600)
9 ... 986409 O(986409)
10 ... 9864100 O(9864100)

快看看这个表格吧,n为10的时候O(n!)达到了O(9864100),接近了O(一千万)。这种算法的性能真的是糟糕到极致了。


参考资料


https://juejin.im/post/5e7c09...

https://zhuanlan.zhihu.com/p/...

https://www.bigocheatsheet.com/

https://stackoverflow.com/que...

相关文章
|
22天前
|
机器学习/深度学习 算法 程序员
读《趣学算法》:重开算法之门,时间复杂度与空间复杂度
本文是作者阅读《趣学算法》后的笔记,介绍了算法复杂度的基本概念,包括时间复杂度和空间复杂度的不同阶表示,并通过具体例子展示了如何计算和理解算法的效率。
54 2
读《趣学算法》:重开算法之门,时间复杂度与空间复杂度
|
2月前
|
机器学习/深度学习 存储 算法
颠覆认知!Python算法设计中的时间复杂度与空间复杂度,你真的理解对了吗?
【7月更文挑战第22天】在Python算法设计中,时间与空间复杂度是评估算法效能的核心。时间复杂度不仅限于大O表示法,还涵盖平均与最坏情况分析。空间复杂度虽关注额外存储,但也反映内存效率。平衡二者需视场景而定,如利用原地算法减少内存消耗,或牺牲空间加速执行。算法优化技巧,如分治与动态规划,助你在资源与速度间找寻最优解,从而高效应对大数据挑战。
36 3
|
4月前
|
机器学习/深度学习 算法 存储
[数据结构]——算法的时间复杂度和空间复杂度
[数据结构]——算法的时间复杂度和空间复杂度
|
1月前
|
机器学习/深度学习 存储 算法
算法时间复杂度分析
这篇文章讲解了如何分析算法的时间复杂度,包括关注循环执行次数最多的代码段、总复杂度的确定、嵌套代码复杂度的计算方法,并提供了大O阶的推导步骤和常见时间复杂度的列表,同时还介绍了空间复杂度的概念及其重要性。
|
1月前
|
搜索推荐
九大排序算法时间复杂度、空间复杂度、稳定性
九大排序算法的时间复杂度、空间复杂度和稳定性,提供了对各种排序方法效率和特性的比较分析。
51 1
|
2月前
|
存储 算法 搜索推荐
深度剖析 Python 算法:时间复杂度与空间复杂度的爱恨情仇,你站哪边?
【7月更文挑战第23天】在Python算法设计中,时间复杂度与空间复杂度如影随形,反映算法效率与资源消耗。时间复杂度揭示算法随输入规模增长的计算趋势,空间复杂度关注额外存储需求。找最大值示例中,两种实现均具O(n)时间与O(1)空间复杂度,但在排序等复杂场景下,如冒泡排序与快速排序,或哈希表与二叉树查找,权衡变得关键。实时系统偏好低时间复杂度算法,存储受限环境则需关注空间效率。最佳选择依应用场景而定,掌握二者平衡,方能编写高效代码。
26 10
|
2月前
|
算法 Python
震惊!Python 算法设计背后,时间复杂度与空间复杂度的惊天秘密大起底!
【7月更文挑战第23天】在Python算法设计中,时间与空间复杂度是幕后操控程序效率的双雄。时间复杂度反映算法执行时间随输入规模增长的速度,空间复杂度则计量算法运行时额外内存的使用。如顺序查找的时间复杂度O(n)与固定空间O(1),对比冒泡排序的O(n^2)时间和快速排序的O(n log n)时间优势,后者虽递归消耗空间,但在多数情况下提供更佳性能。根据需求,可权衡选择,如利用哈希表在充足内存下实现O(1)查找,或在空间受限时,偏好空间效率更高的算法,实现Python代码的高性能与优雅。
40 6
|
2月前
|
存储 算法 搜索推荐
揭秘!Python算法设计的隐形杀手:忽视时间复杂度与空间复杂度的后果有多严重?
【7月更文挑战第24天】在 Python 编程中, 算法设计是性能与效率的基石。忽视时间复杂度 (如使用 O(2^n) 的斐波那契数列递归算法而非 O(n) 的动态规划版本) 和空间复杂度 (如在插入排序中每次迭代都复制整个已排序数组, 导致 O(n^2) 的空间复杂度) 可能严重拖累程序。性能优化至关重要, 合理的算法设计保证程序高效稳定, 是攀登技术高峰的坚实阶梯。
37 3
|
2月前
|
算法 搜索推荐 数据处理
震惊!Python算法设计背后,时间复杂度与空间复杂度的惊天秘密大起底!
【7月更文挑战第24天】在编程世界里, Python以简洁强大备受欢迎, 但算法设计与复杂度分析对程序性能至关重要。算法是程序的灵魂, 其效率直接影响数据处理能力。时间复杂度衡量算法执行速度, 如冒泡排序O(n²)与快速排序O(n log n)的显著差异; 空间复杂度关注内存占用, 递归算法需警惕栈溢出风险。优秀算法需平衡时间和空间效率, 深入理解问题本质, 迭代优化实现高效可靠。
32 2
|
2月前
|
算法 Python
算法小白秒变高手?一文读懂Python时间复杂度与空间复杂度,效率翻倍不是梦!
【7月更文挑战第24天】在编程中,算法效率由时间复杂度(执行速度)与空间复杂度(内存消耗)决定。时间复杂度如O(n), O(n^2), O(log n),反映算法随输入增长的耗时变化;空间复杂度则衡量算法所需额外内存。案例对比线性搜索(O(n))与二分搜索(O(log n)),后者利用有序列表显著提高效率。斐波那契数列计算示例中,递归(O(n))虽简洁,但迭代(O(1))更节省空间。掌握这些,让代码性能飞跃,从小白到高手不再是梦想。
43 1