最佳实践—如何高效使用IN查询

简介: 本文将介绍如何在PolarDB-X中做IN查询时,选择最佳的Values个数。

功能介绍

实际场景中经常需要根据一些常量指标做IN查询,其中IN的字段是分区键。例如在电商场景中,所有订单都会记录到订单表Order,此表按照订单ID进行拆分,一个买家经常会根据已购买的订单列表,查询这些订单的具体信息。假设用户已购买的订单数是2,那么会产生2个值的IN条件查询,理论上查询会路由到两个2分片。查询SQL示例:


SELECT * FROM ORDER WHERE ORDER_ID IN (id1,id2)

随着用户购买的订单数增加,查询订单信息的IN值数量也会增加,这样一次查询很可能会路由到所有的分片,导致RT变高。下图展示了IN值数量、扫描分片数和RT之间的关系。

70..png

功能介绍

实际场景中经常需要根据一些常量指标做IN查询,其中IN的字段是分区键。例如在电商场景中,所有订单都会记录到订单表Order,此表按照订单ID进行拆分,一个买家经常会根据已购买的订单列表,查询这些订单的具体信息。假设用户已购买的订单数是2,那么会产生2个值的IN条件查询,理论上查询会路由到两个2分片。查询SQL示例:


SELECT * FROM ORDER WHERE ORDER_ID IN (id1,id2)

随着用户购买的订单数增加,查询订单信息的IN值数量也会增加,这样一次查询很可能会路由到所有的分片,导致RT变高。下图展示了IN值数量、扫描分片数和RT之间的关系。

80..png

比对测试

在兼顾RT和吞吐的场景下,确定合理的IN查询的值的数量。在规格2×16C64G的节点,针对一张分表数量为64,分表记录数为百万级别的表在不同值数量、不同并发下做测试。在内核版本5.4.8-16069335(包含)之后针对IN查询进一步完善了动态裁剪分表的能力,下发的物理SQL也会裁剪掉多余的Values,下面是比对测试的结果。

  1. 在不同并发下,不同Values值数量下测试,开启IN查询动态裁剪能力下,查看RT变化。90.png
  2. 在不同并发下,不同Values值数量下测试,开启IN查询动态裁剪能力下,查看吞吐变化。100.png
  3. 在不同并发下,不同Values值数量下测试,关闭IN查询动态裁剪能力下,查看RT变化。111.png
  4. 在不同并发下,不同Values值数量下测试,关闭IN查询动态裁剪能力下,查看吞吐变化。112.png
  5. 通过测试对比,可以得到以下结论:
  • 兼顾RT和吞吐时,建议IN的值的数量在8~32之间,基本对齐分布式Parallel Query的默认并发度(单节点的CPU内核数)。
  • 在内核版本5.4.8-16069335(包含)之后,在开启IN查询的动态裁剪能力下,吞吐和RT都有明显的优势,推荐您将内核版本升级至5.4.8及以上版本。
相关文章
|
3天前
|
数据采集 人工智能 安全
|
12天前
|
云安全 监控 安全
|
4天前
|
自然语言处理 API
万相 Wan2.6 全新升级发布!人人都能当导演的时代来了
通义万相2.6全新升级,支持文生图、图生视频、文生视频,打造电影级创作体验。智能分镜、角色扮演、音画同步,让创意一键成片,大众也能轻松制作高质量短视频。
1071 151
|
17天前
|
机器学习/深度学习 人工智能 自然语言处理
Z-Image:冲击体验上限的下一代图像生成模型
通义实验室推出全新文生图模型Z-Image,以6B参数实现“快、稳、轻、准”突破。Turbo版本仅需8步亚秒级生成,支持16GB显存设备,中英双语理解与文字渲染尤为出色,真实感和美学表现媲美国际顶尖模型,被誉为“最值得关注的开源生图模型之一”。
1745 9
|
9天前
|
人工智能 自然语言处理 API
一句话生成拓扑图!AI+Draw.io 封神开源组合,工具让你的效率爆炸
一句话生成拓扑图!next-ai-draw-io 结合 AI 与 Draw.io,通过自然语言秒出架构图,支持私有部署、免费大模型接口,彻底解放生产力,绘图效率直接爆炸。
688 152
|
11天前
|
人工智能 安全 前端开发
AgentScope Java v1.0 发布,让 Java 开发者轻松构建企业级 Agentic 应用
AgentScope 重磅发布 Java 版本,拥抱企业开发主流技术栈。
656 12
|
6天前
|
SQL 自然语言处理 调度
Agent Skills 的一次工程实践
**本文采用 Agent Skills 实现整体智能体**,开发框架采用 AgentScope,模型使用 **qwen3-max**。Agent Skills 是 Anthropic 新推出的一种有别于mcp server的一种开发方式,用于为 AI **引入可共享的专业技能**。经验封装到**可发现、可复用的能力单元**中,每个技能以文件夹形式存在,包含特定任务的指导性说明(SKILL.md 文件)、脚本代码和资源等 。大模型可以根据需要动态加载这些技能,从而扩展自身的功能。目前不少国内外的一些框架也开始支持此种的开发方式,详细介绍如下。
419 4