SQL调优指南—SQL调优进阶—聚合优化和执行

简介: 本文介绍如何优化器和执行器如何处理聚合(Group-by),以达到减少数据传输量和提高执行效率的效果。

基本概念

聚合操作(Aggregate,简称Agg)语义为按照GROUP BY指定列对输入数据进行聚合的计算,或者不分组、对所有数据进行聚合的计算。PolarDB-X支持如下聚合函数:

  • COUNT
  • SUM
  • AVG
  • MAX
  • MIN
  • BIT_OR
  • BIT_XOR
  • GROUP_CONCAT

聚合(Agg)

本文介绍均为不下推的Agg的实现。如果已被下推到LogicalView中,则由存储层MySQL来选择执行方式,聚合(Agg)由两种主要的算子HashAgg和SortAgg实现。

HashAgg

HashAgg利用哈希表实现聚合:

  1. 根据输入行的分组列的值,通过Hash找到对应的分组。
  2. 按照指定的聚合函数,对该行进行聚合计算。
  3. 重复以上步骤直到处理完所有的输入行,最后输出聚合结果。


> explain select count(*) from t1 join t2 on t1.id = t2.id group by t1.name,t2.name;
Project(count(*)="count(*)")
  HashAgg(group="name,name0", count(*)="COUNT()")
    BKAJoin(condition="id = id", type="inner")
      Gather(concurrent=true)
        LogicalView(tables="t1", shardCount=2, sql="SELECT `id`, `name` FROM `t1` AS `t1`")
      Gather(concurrent=true)
        LogicalView(tables="t2_[0-3]", shardCount=4, sql="SELECT `id`, `name` FROM `t2` AS `t2` WHERE (`id` IN ('?'))")

Explain结果中,HashAgg算子还包含以下关键信息:

  • group:表示GROUP BY字段,示例中为name,name0分别引用t1,t2表的name列,当存在相同别名会通过后缀数字区分 。
  • 聚合函数:等号(=) 前为聚合函数对应的输出列名,其后为对应的计算方法。示例中 count(*)="COUNT()" ,第一个 count(*) 对应输出的列名,随后的COUNT()表示对其输入数据进行计数。

HashAgg对应可以通过Hint来关闭:/*+TDDL:cmd_extra(ENABLE_HASH_AGG=false)*/

SortAgg

SortAgg在输入数据已按分组列排序的情况,对各个分组依次完成聚合。

  • 保证输入按指定的分组列排序(例如,可能会看到 MergeSort 或 MemSort)。
  • 逐行读入输入数据,如果分组与当前分组相同,则对其进行聚合计算。
  • 如果分组与当前分组不同,则输出当前分组上的聚合结果。

相比 HashAgg,SortAgg 每次只要处理一个分组,内存消耗很小;相对的,HashAgg 需要把所有分组存储在内存中,需要消耗较多的内存。


> explain select count(*) from t1 join t2 on t1.id = t2.id group by t1.name,t2.name order by t1.name, t2.name;

Project(count()="count()")
MemSort(sort="name ASC,name0 ASC")
HashAgg(group="name,name0", count(*)="COUNT()")
BKAJoin(condition="id = id", type="inner")
Gather(concurrent=true)
LogicalView(tables="t1", shardCount=2, sql="SELECT `id`, `name` FROM `t1` AS `t1`")
Gather(concurrent=true)
LogicalView(tables="t2_[0-3]", shardCount=4, sql="SELECT `id`, `name` FROM `t2` AS `t2` WHERE (`id` IN ('?'))")

SortAgg对应可以通过Hint来关闭:/+TDDL:cmd_extra(ENABLE_SORT_AGG=false)/

两阶段聚合优化

两阶段聚合,即通过将Agg拆分为部分聚合(Partial Agg)和最终聚合(Final Agg)的两个阶段,先对部分结果集做聚合,然后将这些部分聚合结果汇总,得到整体聚合的结果。

如下示例的SQL中,HashAgg 中拆分出的部分聚合(PartialAgg)会被下推至MySQL上的各个分表,而其中的AVG函数也被拆分成 SUM和 COUNT 以实现两阶段的计算:


> explain select avg(age) from t2 group by name
Project(avg(age)="sum_pushed_sum / sum_pushed_count")
HashAgg(group="name", sum_pushed_sum="SUM(pushed_sum)", sum_pushed_count="SUM(pushed_count)")
Gather(concurrent=true)
LogicalView(tables="t2_[0-3]", shardCount=4, sql="SELECT `name`, SUM(`age`) AS `pushed_sum`, COUNT(`age`) AS `pushed_count` FROM `t2` AS `t2` GROUP BY `name`")

两阶段聚合的优化能大大减少数据传输量、提高执行效率。

总的来说,大部分场景做聚合的时候都倾向于选择HashAgg,只要当以下场景下才适合选择SortAgg做聚合:

  1. 数据比较多,内存严重不足。
  2. 聚合算子的输入已经按照Group By 列做好排序,这样做SortAgg就不需要额外排序,执行效率会更高。
  3. 当数据有严重倾斜,导致HashAgg执行效率不高,优先使用SortAgg
相关文章
|
存储 机器学习/深度学习
【2023五一杯数学建模】B题 快递需求分析 31页论文
本文提出了一个基于历史快递运输数据的数学模型,用于预测快递需求量、评估站点城市重要性、预测未来运输需求、优化运输成本,并分析了快递需求的固定和非固定部分,为快递公司提供了决策支持,帮助其更好地规划仓库站点、节约成本并提高运输效率。
335 1
|
存储 缓存 网络协议
Linux操作系统的内核优化与性能调优####
本文深入探讨了Linux操作系统内核的优化策略与性能调优方法,旨在为系统管理员和高级用户提供一套实用的指南。通过分析内核参数调整、文件系统选择、内存管理及网络配置等关键方面,本文揭示了如何有效提升Linux系统的稳定性和运行效率。不同于常规摘要仅概述内容的做法,本摘要直接指出文章的核心价值——提供具体可行的优化措施,助力读者实现系统性能的飞跃。 ####
|
并行计算 PyTorch 算法框架/工具
yolov5训练太慢的解决方案
这篇文章讨论了YOLOv5训练速度慢的问题,并提供了解决方案,主要是由于没有安装CUDA和支持GPU的PyTorch版本,导致只有CPU在工作。文章建议安装CUDA和正确配置支持GPU的PyTorch以加速训练过程。
1170 1
yolov5训练太慢的解决方案
|
机器学习/深度学习 存储 自动驾驶
基于YOLOv8深度学习的45种交通标志智能检测与识别系统【python源码+Pyqt5界面+数据集+训练代码】目标检测、深度学习实战
基于YOLOv8深度学习的45种交通标志智能检测与识别系统【python源码+Pyqt5界面+数据集+训练代码】目标检测、深度学习实战
|
计算机视觉 Python
OpenCV图像处理-图片拼接(Python)
1. 图片拼接原理 对于图像拼接主要分为两部分:1.特征点匹配,确定两幅图之间的位置关系;2.把所有图像投影变换到同一坐标系,并完成对接与融合。
633 0
|
关系型数据库 Linux C语言
|
机器学习/深度学习 存储 运维
DLOps:用于深度学习的 MLOps(Valohai)
机器学习运维 (MLOps) 刚刚成为一个被广泛认可的概念——尽管不一定被广泛理解或认同。 但是,如果您在科技领域工作了很长时间,你就会知道下一个新的缩写词已经在角落里嗡嗡响了。 DLOps 即深度学习运维,是 MLOps 的演变,旨在解决深度学习带来的独特运维挑战。 持怀疑态度的人可能会认为这是用一个新的流行词不必要地来搅浑水,但看看 DLOps 可能与 MLOps 不同的原因可能是有价值的。 为此,我们应该先看看机器学习和深度学习之间的区别。
|
3天前
|
数据采集 人工智能 安全