SQL调优指南—SQL调优进阶—查询改写与下推

简介: 下推是查询改写的一项重要优化,利用PolarDB-X的拆分信息来优化执行计划,使得算子尽量下推以达到提前过滤数据、减少网络传输、并行计算等目的。

背景信息

根据PolarDB-X的SQL语句优化的基本原则,可以下推尽量更多的计算到存储层MySQL上执行。可下推计算主要包括:

  • JOIN连接
  • 过滤条件(如WHEREHAVING
  • 计算(如COUNTGROUP BY
  • 排序(如ORDER BY
  • 去重(如DISTINCT
  • 函数计算(如NOW()函数)
  • 子查询

通过explain optimizer + sql可以看到查询改写的具体过程。

Project和Filter下推

一条SQL的执行计划在如下生成过程中,Filter和Project被先后下推到LogicalView算子里面。Filter和Project下推可以达到提前过滤数据,减少网络传输等效果。


mysql> explain optimizer select c_custkey,c_name from customer where c_custkey = 1;

其中c_custkey是分区键。1111.png

背景信息

根据PolarDB-X的SQL语句优化的基本原则,可以下推尽量更多的计算到存储层MySQL上执行。可下推计算主要包括:

  • JOIN连接
  • 过滤条件(如WHEREHAVING
  • 计算(如COUNTGROUP BY
  • 排序(如ORDER BY
  • 去重(如DISTINCT
  • 函数计算(如NOW()函数)
  • 子查询

通过explain optimizer + sql可以看到查询改写的具体过程。

Project和Filter下推

一条SQL的执行计划在如下生成过程中,Filter和Project被先后下推到LogicalView算子里面。Filter和Project下推可以达到提前过滤数据,减少网络传输等效果。


mysql> explain optimizer select c_custkey,c_name from customer where c_custkey = 1;

其中c_custkey是分区键。22222.png

拆分键不为c_nationkey情况:6666.png

JOIN下推

JOIN下推需要满足以下条件:

  • t1与t2表的拆分方式一致(包括分库键、分表键、拆分函数、分库分表数目)。
  • JOIN条件中包含t1,t2表拆分键的等值关系。此外,任意表JOIN广播表总是可以下推。


mysql> explain optimizer select * from t1, t2 where t1.id = t2.id;

一条SQL的执行计划在如下生成过程中,JOIN下推到LogicalView算子里面。JOIN下推可以达到计算离存储更近,并行执行加速的效果。1.1.png

JoinClustering

当有多个表执行JOIN操作时,PolarDB-X会通过join clustering的优化技术将JOIN进行重排序,将可下推的JOIN放到相邻的位置,从而让它可以被正常下推。示例如下:

假设原JOIN顺序为t2、t1、l2, 经过重排序之后,t2和l2的JOIN操作依然能下推到LogicalView。SQL复制代码


mysql> explain select t2.id from t2 join t1 on t2.id = t1.id join l2 on t1.id = l2.id;

Project(id="id")
HashJoin(condition="id = id AND id = id0", type="inner")
Gather(concurrent=true)
LogicalView(tables="t2_[0-3],l2_[0-3]", shardCount=4, sql="SELECT `t2`.`id`, `l2`.`id` AS `id0` FROM `t2` AS `t2` INNER JOIN `l2` AS `l2` ON (`t2`.`id` = `l2`.`id`) WHERE (`t2`.`id` = `l2`.`id`)")
Gather(concurrent=true)
LogicalView(tables="t1", shardCount=2, sql="SELECT `id` FROM `t1` AS `t1`")

子查询下推

一条SQL的执行计划在如下生成过程中,子查询下推到LogicalView算子里面。子查询下推可以达到计算离存储更近,并行执行加速的效果。

  1. 子查询会先被转换成Semi JoinAnti Join
  2. 如果满足上节中JOIN下推的判断条件,就会将Semi JoinAnti Join下推至LogicalView
  3. 下推后的Semi JoinAnti Join会被还原为子查询。


explain optimizer select * from t1 where id in (select id from t2);

2.1.png

相关实践学习
每个IT人都想学的“Web应用上云经典架构”实战
本实验从Web应用上云这个最基本的、最普遍的需求出发,帮助IT从业者们通过“阿里云Web应用上云解决方案”,了解一个企业级Web应用上云的常见架构,了解如何构建一个高可用、可扩展的企业级应用架构。
MySQL数据库入门学习
本课程通过最流行的开源数据库MySQL带你了解数据库的世界。   相关的阿里云产品:云数据库RDS MySQL 版 阿里云关系型数据库RDS(Relational Database Service)是一种稳定可靠、可弹性伸缩的在线数据库服务,提供容灾、备份、恢复、迁移等方面的全套解决方案,彻底解决数据库运维的烦恼。 了解产品详情: https://www.aliyun.com/product/rds/mysql 
相关文章
|
3天前
|
数据采集 人工智能 安全
|
12天前
|
云安全 监控 安全
|
4天前
|
自然语言处理 API
万相 Wan2.6 全新升级发布!人人都能当导演的时代来了
通义万相2.6全新升级,支持文生图、图生视频、文生视频,打造电影级创作体验。智能分镜、角色扮演、音画同步,让创意一键成片,大众也能轻松制作高质量短视频。
1069 151
|
4天前
|
编解码 人工智能 机器人
通义万相2.6,模型使用指南
智能分镜 | 多镜头叙事 | 支持15秒视频生成 | 高品质声音生成 | 多人稳定对话
|
17天前
|
机器学习/深度学习 人工智能 自然语言处理
Z-Image:冲击体验上限的下一代图像生成模型
通义实验室推出全新文生图模型Z-Image,以6B参数实现“快、稳、轻、准”突破。Turbo版本仅需8步亚秒级生成,支持16GB显存设备,中英双语理解与文字渲染尤为出色,真实感和美学表现媲美国际顶尖模型,被誉为“最值得关注的开源生图模型之一”。
1743 9
|
9天前
|
人工智能 自然语言处理 API
一句话生成拓扑图!AI+Draw.io 封神开源组合,工具让你的效率爆炸
一句话生成拓扑图!next-ai-draw-io 结合 AI 与 Draw.io,通过自然语言秒出架构图,支持私有部署、免费大模型接口,彻底解放生产力,绘图效率直接爆炸。
687 152
|
11天前
|
人工智能 安全 前端开发
AgentScope Java v1.0 发布,让 Java 开发者轻松构建企业级 Agentic 应用
AgentScope 重磅发布 Java 版本,拥抱企业开发主流技术栈。
655 12
|
6天前
|
SQL 自然语言处理 调度
Agent Skills 的一次工程实践
**本文采用 Agent Skills 实现整体智能体**,开发框架采用 AgentScope,模型使用 **qwen3-max**。Agent Skills 是 Anthropic 新推出的一种有别于mcp server的一种开发方式,用于为 AI **引入可共享的专业技能**。经验封装到**可发现、可复用的能力单元**中,每个技能以文件夹形式存在,包含特定任务的指导性说明(SKILL.md 文件)、脚本代码和资源等 。大模型可以根据需要动态加载这些技能,从而扩展自身的功能。目前不少国内外的一些框架也开始支持此种的开发方式,详细介绍如下。
415 4