机器学习系列(8)_回归算法,支持向量机

简介: 机器学习应用的领域非常广泛:数据挖掘:分析用户信息,提高用户对产品的依赖性。计算机视觉:无人驾驶汽车–实时进行检测任务

一、机器学习简介



机器学习应用的领域非常广泛:

  1. 数据挖掘:分析用户信息,提高用户对产品的依赖性。
  2. 计算机视觉:无人驾驶汽车–实时进行检测任务

image.png


机器学习的步骤:

1、训练样本

2、特征提取(数据科学家:知道一份数据如何是机器能更好的识别特征)

3、学习函数

4、预测


Numpy:科学计算库(矩阵)

Pandas:数据分析处理库(缺失值,异常值等数据分析处理)

Matplotlib:数据可视化库(画图)

Scikit-learn:机器学习库(机器学习)


二、回归算法



分类:最终得出的结果是一个类别

回归:最终的结果不是类别值,而是具体的值


例子:

根据工资和年龄来判断银行能够向该客户借多少钱。

由于最终的预测结果是一个具体的值,因此这是一个回归问题。

工资和年龄这两个指标称为特征,两个特征的影响程度是不一样的。

ea4156af4374499099421f32604876b1.png

a2749fb7f6a24a39be0acdabc9f8ee9a.png

关于线性回归的算法,大体上面是使用了概率论与数理统计当中的似然函数以及对数似然函数,具体过程就不展示了,目标函数如下:

88e0c707ac424afd9420aaa70c08c8f6.png

逻辑回归:

逻辑回归是经典的二分类问题,虽然是回归,但它得到的最终的结果是类别

ba69e1635dcb4dcbaf134c9ee6b39150.pngimage.png


关于梯度下降:梯度下降算法原理讲解——机器学习


三、支持向量机要解决的问题



支持向量机做的是分类任务,解决二分类问题。

支持向量机相比于决策树,不仅要分的纯,还要分的好,能够容忍的误差更大。

image.png

image.png


因此支持向量机要解决的问题就是找到最优的线,能最好的区分样本,进行分类。


四、支持向量机求解目标



根据上图,我们的目的是找到一条线,这条线要满足以下要求:

即下图

ea0d36cb69394f3da09fba4adf011da6.png61cfebe0740a4e36aba891aa30d5660b.png

下图中的X1,X3就是支持向量机算法当中的支持向量。

87c0077aef7b4038b5efff1fd489fa47.png

对于线性的支持向量机,只要找出这样一个超平面即可。

但是如果样本数据当中存在异常点,那么就需要舍去这个异常点。

观察下面的实线:由于包含了异常点,因此O和X都离线很近,但如果使用虚线,则OX离虚线较远,能更好的满足我们的需求。

a1341fd1416b481dbd6868884848ee59.png775d13429af54ad7b8f76253cf76602a.png


五、核函数变换



76a22e704a4546f9a2d613f93a185448.png

image.png


支持向量机就是通过一些核函数,将一些低维空间的数据,转化成高维空间的数据。


相关文章
|
16天前
|
机器学习/深度学习 算法 Java
机器学习、基础算法、python常见面试题必知必答系列大全:(面试问题持续更新)
机器学习、基础算法、python常见面试题必知必答系列大全:(面试问题持续更新)
|
1月前
|
机器学习/深度学习 算法 决策智能
【机器学习】揭秘深度学习优化算法:加速训练与提升性能
【机器学习】揭秘深度学习优化算法:加速训练与提升性能
|
5天前
|
机器学习/深度学习 人工智能 算法
探索机器学习中的决策树算法
【10月更文挑战第29天】本文将深入浅出地介绍决策树算法,一种在机器学习中广泛使用的分类和回归方法。我们将从基础概念出发,逐步深入到算法的实际应用,最后通过一个代码示例来直观展示如何利用决策树解决实际问题。无论你是机器学习的初学者还是希望深化理解的开发者,这篇文章都将为你提供有价值的见解和指导。
|
28天前
|
机器学习/深度学习 算法 Python
探索机器学习中的决策树算法:从理论到实践
【10月更文挑战第5天】本文旨在通过浅显易懂的语言,带领读者了解并实现一个基础的决策树模型。我们将从决策树的基本概念出发,逐步深入其构建过程,包括特征选择、树的生成与剪枝等关键技术点,并以一个简单的例子演示如何用Python代码实现一个决策树分类器。文章不仅注重理论阐述,更侧重于实际操作,以期帮助初学者快速入门并在真实数据上应用这一算法。
|
1月前
|
机器学习/深度学习 算法 大数据
机器学习入门:梯度下降算法(下)
机器学习入门:梯度下降算法(下)
|
25天前
|
机器学习/深度学习 算法 数据处理
EM算法对人脸数据降维(机器学习作业06)
本文介绍了使用EM算法对人脸数据进行降维的机器学习作业。首先通过加载ORL人脸数据库,然后分别应用SVD_PCA、MLE_PCA及EM_PCA三种方法实现数据降维,并输出降维后的数据形状。此作业展示了不同PCA变种在人脸数据处理中的应用效果。
28 0
|
1月前
|
机器学习/深度学习 算法
机器学习入门:梯度下降算法(上)
机器学习入门:梯度下降算法(上)
|
28天前
|
机器学习/深度学习 人工智能 自然语言处理
【MM2024】阿里云 PAI 团队图像编辑算法论文入选 MM2024
阿里云人工智能平台 PAI 团队发表的图像编辑算法论文在 MM2024 上正式亮相发表。ACM MM(ACM国际多媒体会议)是国际多媒体领域的顶级会议,旨在为研究人员、工程师和行业专家提供一个交流平台,以展示在多媒体领域的最新研究成果、技术进展和应用案例。其主题涵盖了图像处理、视频分析、音频处理、社交媒体和多媒体系统等广泛领域。此次入选标志着阿里云人工智能平台 PAI 在图像编辑算法方面的研究获得了学术界的充分认可。
【MM2024】阿里云 PAI 团队图像编辑算法论文入选 MM2024
|
24天前
|
机器学习/深度学习 人工智能 算法
【玉米病害识别】Python+卷积神经网络算法+人工智能+深度学习+计算机课设项目+TensorFlow+模型训练
玉米病害识别系统,本系统使用Python作为主要开发语言,通过收集了8种常见的玉米叶部病害图片数据集('矮花叶病', '健康', '灰斑病一般', '灰斑病严重', '锈病一般', '锈病严重', '叶斑病一般', '叶斑病严重'),然后基于TensorFlow搭建卷积神经网络算法模型,通过对数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。再使用Django搭建Web网页操作平台,实现用户上传一张玉米病害图片识别其名称。
49 0
【玉米病害识别】Python+卷积神经网络算法+人工智能+深度学习+计算机课设项目+TensorFlow+模型训练
|
2月前
|
机器学习/深度学习 算法 TensorFlow
交通标志识别系统Python+卷积神经网络算法+深度学习人工智能+TensorFlow模型训练+计算机课设项目+Django网页界面
交通标志识别系统。本系统使用Python作为主要编程语言,在交通标志图像识别功能实现中,基于TensorFlow搭建卷积神经网络算法模型,通过对收集到的58种常见的交通标志图像作为数据集,进行迭代训练最后得到一个识别精度较高的模型文件,然后保存为本地的h5格式文件。再使用Django开发Web网页端操作界面,实现用户上传一张交通标志图片,识别其名称。
95 6
交通标志识别系统Python+卷积神经网络算法+深度学习人工智能+TensorFlow模型训练+计算机课设项目+Django网页界面