超实用的算法小技巧

简介: 本篇文章我们将介绍一些超级实用的算法小技巧,灵活使用这些算法小技巧可以帮助我们更好的解决遇到的问题,让我们的时间复杂度,空间复杂度大大降低,有效的提高我们的编程能力。

1 严格定义函数名称,出入参

我们在一开始拿到算法题,读懂题之后,就需要根据题意定义我们的函数名称,以及入参,函数的返回类型。日常的企业项目开发也是一样,我们在拿到需求之后,需要去定义接口,入参,出参。

我们一定要给处理函数起一个能够明确表达函数功能的名字比如:排序sort,搜索search,统一用英文表示(入参也是如此)。

leetcode技巧: 变量名称定义简单,可以提高算法执行速度,这也是在好多人在刷leetcode参数定义不那么规范的原因,往往在周赛或者一些比赛中一点点优势,就能助我们取得胜利。

2 严进宽出,边界判断

严进宽出就是说我们要对算法的入参进行严格的验证,比如我们经常要对数组、字符串进行非空校验,还有一些需要对边界值进行校验。

对于不符合规范的直接返回,很好的把控边界也可提升我们的算法效率。

笔试小技巧: 优雅严格的边界值判断,往往能给面试官留下很好的印象。

// 入参校验
if (nums == null || nums.length == 0) {
    return -1;
}
// 边界值(不相等时,我们让左边指针移动到二分处,并且+1就很细节,因为中间点已经不符合,所以我们+1可以少循环一次)
while (l <= r) {
    mid = l + (r - l) / 2;
    if (nums[mid] == target) {
        return mid;
    } else if (nums[mid] < target) {
        l = mid + 1;
    } else if (nums[mid] > target) {
        r = mid - 1;
    }
}

3 暴力解法

没有经过算法训练的同学,一般在解决算法问题时,只能想到暴力解法,常常就是多层嵌套函数,定义额外的空间。

往往时间复杂度都是O(N)、O(N²) 虽然也能解决算法问题,但是往往因为算法的执行效率过低,代码不够优雅让Offer与我们失之交臂。

不过暴力解法虽然效率不高,但是是我们必须掌握的,写出来永远比什么都写不出来要强的多,暴力解法就要求我们灵活应用每种数据结构的遍历,并加入条件判断逻辑。

以下几个技巧则可以帮助我们优化算法,提供算法的执行效率。

4 双指针(Two Pointers)

双指针是一种算法小套路,我们在好多地方可以见到双指针的妙用,比如二分查找,确定链表是否成环等,接下来我们就来一起探究一下双指针的妙用。

image.png

双指针一般有以下几种形式。

  • 普通双指针

    两个指针往同一个方向移动

        /**
         * 冒泡排序
         * @param nums
         */
        public static void sort(int [] nums) {
            if (nums == null || nums.length == 0) {
                return;
            }
            int temp = 0;
            for (int i = 0; i < nums.length - 1; i++) {
                for (int j = i + 1; j < nums.length; j++) {
                    if (nums[i] > nums[j]) {
                        temp = nums[i];
                        nums[i] = nums[j];
                        nums[j] = temp;
                    }
                }
            }
        }
  • 对撞双指针

    两个指针从两端向对方移动

    /**
     * 力扣704 二分查找
     * 二分查找算法是借助二分的思想,结合双指针来实现的一种搜索算法
     * @author zhj
     */
    public class Test704 {
        public static void main(String[] args) {
            int[] nums = {-1, 0, 3, 5, 9, 12};
            int index = search(nums, 5);
            System.out.println(index);
        }
    ​
        private static int search(int[] nums, int target) {
            if (nums == null || nums.length == 0) {
                return -1;
            }
            int l = 0;
            int r = nums.length - 1;
            int mid;
            while (l <= r) {
                mid = l + (r - l) / 2;
                if (nums[mid] == target) {
                    return mid;
                } else if (nums[mid] < target) {
                    l = mid + 1;
                } else if (nums[mid] > target) {
                    r = mid - 1;
                }
            }
            return -1;
        }
    }
  • 快慢双指针

    慢指针+快指针 解决环形链表问题

    /**
     * 力扣 141 环形链表
     * 给定一个链表,判断链表中是否有环
     * @author zhj
     */
    public class Test141 {
        public static void main(String[] args) {
            ListNode node = new ListNode(1);
            ListNode node1 = new ListNode(2);
            ListNode node2 = new ListNode(3);
            ListNode node3 = new ListNode(4);
            ListNode node4 = new ListNode(5);
            node.next = node1;
            node1.next = node2;
            node2.next = node3;
            node3.next = node4;
            node4.next = node2;
            System.out.println(isRing(node));
        }
    ​
        private static boolean isRing(ListNode node) {
            if (node == null || node.next == null) {
                return false;
            }
            ListNode s = node;
            ListNode f = node;
            while (f != null && f.next != null) {
                s = s.next;
                f = f.next.next;
                if (s == f) {
                    return true;
                }
            }
            return false;
        }
    }

5 滑动窗口

滑动窗口也是一种算法小技巧,可以极大的减少重叠部分计算量,尤其是当重叠部分比较大的时候,效果格外明显。滑动窗口主要解决的是连续定长子数组的问题,但是有一些非定长的也可以通过滑动窗口的思想来解决。

当我们移动窗口时只需要排除移除的一个数据,在加入移入的一个数据,窗口内其它数据是不需要做出改变的。

image.png

非定长一般需要通过加入内层循环来解决。

/**
 * 力扣209 长度最小的子数组
 * @author zhj
 */
public class Test209 {
​
    public static void main(String[] args) {
        int[] nums = {2,3,1,2,4,3};
        System.out.println(mumsLength(nums, 7));
    }
​
    private static int mumsLength(int[] nums, int sum) {
        if (nums == null || nums.length == 0) {
            return 0;
        }
        int res = nums.length + 1;
        int total = 0;
        int i = 0;
        int j = 0;
        while (j < nums.length) {
            total = total + nums[j];
            j++;
            while (total >= sum) {
                res = res < j-i ? res : j-i;
                total = total - nums[i];
                i = i + 1;
            }
        }
        if (res == nums.length + 1) {
            return 0;
        }
        return res;
    }
}

6 递归

一些复杂的问题,我们往往可以通过递归去简化。

特点:自己调自己,根据特点条件可以返回,不会陷入死循环。

递归的四个要素:

  • 参数
  • 返回值
  • 终止条件
  • 递归拆解

经典问题斐波那契数列

0,1,1,2,3,5... f(0) = 0 f(1) = 1 f(n) = f(n-1) + f(n-2)

int recursion(int n) {
    if (n < 2) {
        return n == 1 ? 1 : 0;
    }
    return recursion(n-1) + recursion(n-2);
}

7 高阶算法

除了上边一些简单的小技巧之外,还有许多高阶的算法,比如由递归引发的分治法、回溯法;还有树和图的遍历方法,深度优先遍历,广度优先遍历;还有经典的算法贪心算法、动态规划等等,本文将不做讲解,后续会单独更新在算法这一专栏中,希望大家持续关注。

目录
相关文章
|
8月前
|
存储 算法 容器
算法刷题小技巧【持续补充~】
算法刷题小技巧【持续补充~】
34 2
|
自然语言处理 算法 程序员
解答算法题的一个小技巧
解答算法题的一个小技巧
|
存储 算法 Java
【算法攻坚】整数翻转的小技巧
【算法攻坚】整数翻转的小技巧
155 0
|
Web App开发 JSON JavaScript
|
4天前
|
算法 数据安全/隐私保护 计算机视觉
基于Retinex算法的图像去雾matlab仿真
本项目展示了基于Retinex算法的图像去雾技术。完整程序运行效果无水印,使用Matlab2022a开发。核心代码包含详细中文注释和操作步骤视频。Retinex理论由Edwin Land提出,旨在分离图像的光照和反射分量,增强图像对比度、颜色和细节,尤其在雾天条件下表现优异,有效解决图像去雾问题。
|
4天前
|
算法 数据可视化 安全
基于DWA优化算法的机器人路径规划matlab仿真
本项目基于DWA优化算法实现机器人路径规划的MATLAB仿真,适用于动态环境下的自主导航。使用MATLAB2022A版本运行,展示路径规划和预测结果。核心代码通过散点图和轨迹图可视化路径点及预测路径。DWA算法通过定义速度空间、采样候选动作并评估其优劣(目标方向性、障碍物距离、速度一致性),实时调整机器人运动参数,确保安全避障并接近目标。
|
13天前
|
算法 数据安全/隐私保护
室内障碍物射线追踪算法matlab模拟仿真
### 简介 本项目展示了室内障碍物射线追踪算法在无线通信中的应用。通过Matlab 2022a实现,包含完整程序运行效果(无水印),支持增加发射点和室内墙壁设置。核心代码配有详细中文注释及操作视频。该算法基于几何光学原理,模拟信号在复杂室内环境中的传播路径与强度,涵盖场景建模、射线发射、传播及接收点场强计算等步骤,为无线网络规划提供重要依据。
|
26天前
|
机器学习/深度学习 算法
基于改进遗传优化的BP神经网络金融序列预测算法matlab仿真
本项目基于改进遗传优化的BP神经网络进行金融序列预测,使用MATLAB2022A实现。通过对比BP神经网络、遗传优化BP神经网络及改进遗传优化BP神经网络,展示了三者的误差和预测曲线差异。核心程序结合遗传算法(GA)与BP神经网络,利用GA优化BP网络的初始权重和阈值,提高预测精度。GA通过选择、交叉、变异操作迭代优化,防止局部收敛,增强模型对金融市场复杂性和不确定性的适应能力。
165 80
|
14天前
|
机器学习/深度学习 数据采集 算法
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a实现时间序列预测,采用CNN-GRU-SAM网络结构。卷积层提取局部特征,GRU层处理长期依赖,自注意力机制捕捉全局特征。完整代码含中文注释和操作视频,运行效果无水印展示。算法通过数据归一化、种群初始化、适应度计算、个体更新等步骤优化网络参数,最终输出预测结果。适用于金融市场、气象预报等领域。
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
|
14天前
|
算法
基于龙格库塔算法的锅炉单相受热管建模与matlab数值仿真
本设计基于龙格库塔算法对锅炉单相受热管进行建模与MATLAB数值仿真,简化为喷水减温器和末级过热器组合,考虑均匀传热及静态烟气处理。使用MATLAB2022A版本运行,展示自编与内置四阶龙格库塔法的精度对比及误差分析。模型涉及热传递和流体动力学原理,适用于优化锅炉效率。

热门文章

最新文章