不一样的docker操作

简介: docker-py是Docker SDK for Python。docker-py主要利用了requests,使用http/socket协议连接本地的docker engine进行操作。对 docker 感兴趣,苦于工作中只用到 http 协议的同学,都建议阅读一下本文。话不多数,一起了解docker-py的实现。

docker-py是Docker SDK for Python。docker-py主要利用了requests,使用http/socket协议连接本地的docker engine进行操作。对 docker 感兴趣,苦于工作中只用到 http 协议的同学,都建议阅读一下本文。话不多数,一起了解docker-py的实现,本文分下面几个部分:


  • docker-py项目结构
  • docker-py API示例
  • DockerClient的实现
  • docker-version命令跟踪
  • UnixHTTPAdapter的实现
  • docker-ps命令跟踪
  • docker-logs命令跟踪
  • docker-exec 命令跟踪
  • 小结
  • 小技巧


docker-py项目结构



本次代码阅读,使用的版本是 4.2.0, 项目目录结构大概如下:


文件 描述
client.py docker客户端的API
api api相关目录
api/client.py api的主要实现
api/container.py container相关的api和client-mixin
api/daemon.py daemon相关的api和client-mixin
models 下为各种对象模型,主要是单体及集合
models/resource.py 模型基类
models/containers.py Container和ContainerCollection模型
transport 为客户端和服务端的交互协议
transport/unixconn.py mac下主要使用了unix-sock实现


还有一些目录和类,因为不在这次介绍中,所以就没有罗列。


docker-py API示例



docker-py API上手非常简单:


import docker
client = docker.from_env()
result = client.version()
print(result)
# {'Platform': {'Name': 'Docker Engine - Community'},...}
client.containers.list()
# [<Container '45e6d2de7c54'>, <Container 'db18e4f20eaa'>, ...]
client.images.pull('nginx:1.10-alpine')
# <Image: 'nginx:1.10-alpine'>
client.images.list()
[<Image 'ubuntu'>, <Image 'nginx:1.10-alpine'>, ...]


上面示例展示了:


  • 使用环境变量,创建client连接本地docker-engine服务
  • 获取版本号,等同 docker version
  • 获取正在运行的容器列表,等同 docker container list(别名是 docker ps)
  • 拉取 nginx:1.10-alpin 镜像,等同 docker image pull nginx:1.10-alpine(别名是docker pull nginx:1.10-alpine)
  • 获取镜像列表, 等同 docker image list


我们可以看到,docker-py的操作和docker的标准命令基本一致。


DockerClient的实现



DockerClient的构造函数和工厂方法展示docker-client对象包装了APIClient对象:


# client.py
class DockerClient(object):
    def __init__(self, *args, **kwargs):
        self.api = APIClient(*args, **kwargs)
    @classmethod
    def from_env(cls, **kwargs):
        timeout = kwargs.pop('timeout', DEFAULT_TIMEOUT_SECONDS)
        max_pool_size = kwargs.pop('max_pool_size', DEFAULT_MAX_POOL_SIZE)
        version = kwargs.pop('version', None)
        use_ssh_client = kwargs.pop('use_ssh_client', False)
        return cls(
            timeout=timeout,
            max_pool_size=max_pool_size,
            version=version,
            use_ssh_client=use_ssh_client,
            **kwargs_from_env(**kwargs)
        )


DockerClient的API分2中,一种是属性方法,比如常用的 containersimagesnetworksvolumes 等子命令,因为要将返回值包装成对应模型对象:


@property
def containers(self):
    """
    An object for managing containers on the server. See the
    :doc:`containers documentation <containers>` for full details.
    """
    return ContainerCollection(client=self)
@property
def images(self):
    return ImageCollection(client=self)
@property
def networks(self):
    return NetworkCollection(client=self)
@property
def volumes(self):
    return VolumeCollection(client=self)
    ...


另一种是不需要模型包装,可以直接使用APIClient返回结果的 info, version 等方法:


# Top-level methods
def info(self, *args, **kwargs):
        return self.api.info(*args, **kwargs)
    info.__doc__ = APIClient.info.__doc__
def version(self, *args, **kwargs):
        return self.api.version(*args, **kwargs)
    version.__doc__ = APIClient.version.__doc__
    ...


DockerClient类工厂方法的全局引用:


from_env = DockerClient.from_env


docker-version命令跟踪



我们先从简单的 docker version 命令跟踪查看APIClient如何工作的。APIClient的构造函数:


# api/client.py
import requests
class APIClient(
        requests.Session,
        BuildApiMixin,
        ConfigApiMixin,
        ContainerApiMixin,
        DaemonApiMixin,
        ExecApiMixin,
        ImageApiMixin,
        NetworkApiMixin,
        PluginApiMixin,
        SecretApiMixin,
        ServiceApiMixin,
        SwarmApiMixin,
        VolumeApiMixin):
    def __init__(self, base_url=None, version=None,
             timeout=DEFAULT_TIMEOUT_SECONDS, tls=False,
             user_agent=DEFAULT_USER_AGENT, num_pools=None,
             credstore_env=None, use_ssh_client=False,
             max_pool_size=DEFAULT_MAX_POOL_SIZE):
        super(APIClient, self).__init__()
        base_url = utils.parse_host(
            base_url, IS_WINDOWS_PLATFORM, tls=bool(tls)
        )
        if base_url.startswith('http+unix://'):
            self._custom_adapter = UnixHTTPAdapter(
                base_url, timeout, pool_connections=num_pools,
                max_pool_size=max_pool_size
            )
            self.mount('http+docker://', self._custom_adapter)
            self._unmount('http://', 'https://')
            # host part of URL should be unused, but is resolved by requests
            # module in proxy_bypass_macosx_sysconf()
            self.base_url = 'http+docker://localhost'


上面代码可见:


  • APIClient继承自 requests.Session
  • APIClient使用Mixin方式组合了多个API,比如ContainerApiMixin提供container的api操作;NetWorkApiMixin提供network的api操作
  • 使用mount方法加载不同协议的适配器adapter,unix系的docker是unix-socket;windows则是npipe


关于requests的使用,可以参看之前的博文 requests 源码阅读


默认的服务URL实现:


DEFAULT_UNIX_SOCKET = "http+unix:///var/run/docker.sock"
DEFAULT_NPIPE = 'npipe:////./pipe/docker_engine'
def parse_host(addr, is_win32=False, tls=False):
    path = ''
    port = None
    host = None
    # Sensible defaults
    if not addr and is_win32:
        return DEFAULT_NPIPE
    if not addr or addr.strip() == 'unix://':
        return DEFAULT_UNIX_SOCKET


version 请求在 DaemonApiMixin 中实现:


class DaemonApiMixin(object):
    def version(self, api_version=True):
        url = self._url("/version", versioned_api=api_version)
      return self._result(self._get(url), json=True)


底层的请求和响应在主类APIClient中提供:


class APIClient
    def _url(self, pathfmt, *args, **kwargs):
        ...
        return '{0}{1}'.format(self.base_url, pathfmt.format(*args))
    @update_headers
    def _get(self, url, **kwargs):
        return self.get(url, **self._set_request_timeout(kwargs))
    def _result(self, response, json=False, binary=False):
        assert not (json and binary)
        self._raise_for_status(response)
        if json:
            return response.json()
        if binary:
            return response.content
        return response.text


get和result,response都是requests提供。get发送请求,response.json将请求格式化成json后返回。


UnixHTTPAdapter的实现



/var/run/docker.sock是Docker守护程序侦听的UNIX套接字,其连接使用UnixHTTPAdapter处理:


# transport/unixconn.py
import requests.adapters
RecentlyUsedContainer = urllib3._collections.RecentlyUsedContainer
class UnixHTTPAdapter(BaseHTTPAdapter):
    def __init__(self, socket_url, timeout=60,
                 pool_connections=constants.DEFAULT_NUM_POOLS,
                 max_pool_size=constants.DEFAULT_MAX_POOL_SIZE):
        socket_path = socket_url.replace('http+unix://', '')
        if not socket_path.startswith('/'):
            socket_path = '/' + socket_path
        self.socket_path = socket_path
        self.timeout = timeout
        self.max_pool_size = max_pool_size
        self.pools = RecentlyUsedContainer(
            pool_connections, dispose_func=lambda p: p.close()
        )
        super(UnixHTTPAdapter, self).__init__()
    def get_connection(self, url, proxies=None):
        with self.pools.lock:
            pool = self.pools.get(url)
            if pool:
                return pool
            pool = UnixHTTPConnectionPool(
                url, self.socket_path, self.timeout,
                maxsize=self.max_pool_size
            )
            self.pools[url] = pool
        return pool


UnixHTTPAdapter主要使用urllib3提供的链接池管理UnixHTTPConnection连接:


class UnixHTTPConnection(httplib.HTTPConnection, object):
    def __init__(self, base_url, unix_socket, timeout=60):
        super(UnixHTTPConnection, self).__init__(
            'localhost', timeout=timeout
        )
        self.base_url = base_url
        self.unix_socket = unix_socket
        self.timeout = timeout
        self.disable_buffering = False
    def connect(self):
        sock = socket.socket(socket.AF_UNIX, socket.SOCK_STREAM)
        sock.settimeout(self.timeout)
        sock.connect(self.unix_socket)
        self.sock = sock
    def putheader(self, header, *values):
        super(UnixHTTPConnection, self).putheader(header, *values)
        if header == 'Connection' and 'Upgrade' in values:
            self.disable_buffering = True
    def response_class(self, sock, *args, **kwargs):
        if self.disable_buffering:
            kwargs['disable_buffering'] = True
        return UnixHTTPResponse(sock, *args, **kwargs)
class UnixHTTPConnectionPool(urllib3.connectionpool.HTTPConnectionPool):
    def __init__(self, base_url, socket_path, timeout=60, maxsize=10):
        super(UnixHTTPConnectionPool, self).__init__(
            'localhost', timeout=timeout, maxsize=maxsize
        )
        self.base_url = base_url
        self.socket_path = socket_path
        self.timeout = timeout
    def _new_conn(self):
        return UnixHTTPConnection(
            self.base_url, self.socket_path, self.timeout
        )


connect展示了socket类型是 socket.AF_UNIX, 这一部分的实现都非常基础 。


关于socket,可以参看之前的博文 python http 源码阅读


docker-ps命令跟踪



接着我们跟踪稍微复杂点的命令 client.containers.list(), 也就是 docker ps。前面介绍了,container 会组装结果为数据模型,下面是模型的父类:


class Model(object):
    """
    A base class for representing a single object on the server.
    """
    id_attribute = 'Id'
    def __init__(self, attrs=None, client=None, collection=None):
        self.client = client
        # 集合
        self.collection = collection
        self.attrs = attrs


Model是单个模型抽象,Collection则是模型集合的抽象,使用集合的prepare_model构建各种对象:


class Collection(object):
    """
    A base class for representing all objects of a particular type on the
    server.
    """
    model = None
    def __init__(self, client=None):
        self.client = client
    ...
    def prepare_model(self, attrs):
        """
        Create a model from a set of attributes.
        """
        if isinstance(attrs, Model):
            attrs.client = self.client
            # 双向引用
            attrs.collection = self
            return attrs
        elif isinstance(attrs, dict):
            return self.model(attrs=attrs, client=self.client, collection=self)
        else:
            raise Exception("Can't create %s from %s" %
                            (self.model.__name__, attrs))


Container和ContainerCollection的实现


class Container(Model):
    pass
class ContainerCollection(Collection):
    model = Container
    def get(self, container_id):
        resp = self.client.api.inspect_container(container_id)
        return self.prepare_model(resp)
    def list(self, all=False, before=None, filters=None, limit=-1, since=None,
             sparse=False, ignore_removed=False):
        resp = self.client.api.containers(all=all, before=before,
                                          filters=filters, limit=limit,
                                          since=since)
        containers = []
        for r in resp:
            containers.append(self.get(r['Id']))
        return containers


其中list函数主要有下面几个步骤


  • 使用api的containers接口得到resp,就是container-id列表
  • 逐个循环使用api的inspect_container请求container的详细信息
  • 将结果封装成Container对象
  • 返回容器Container对象列表


api.containers和api.inspect_container在ContainerApiMixin中提供, 非常简单清晰:


class ContainerApiMixin(object):
    def containers(self, quiet=False, all=False, trunc=False, latest=False,
                   since=None, before=None, limit=-1, size=False,
                   filters=None):
        params = {
            'limit': 1 if latest else limit,
            'all': 1 if all else 0,
            'size': 1 if size else 0,
            'trunc_cmd': 1 if trunc else 0,
            'since': since,
            'before': before
        }
        if filters:
            params['filters'] = utils.convert_filters(filters)
        u = self._url("/containers/json")
        res = self._result(self._get(u, params=params), True)
        if quiet:
            return [{'Id': x['Id']} for x in res]
        if trunc:
            for x in res:
                x['Id'] = x['Id'][:12]
        return res
    @utils.check_resource('container')
    def inspect_container(self, container):
        return self._result(
            self._get(self._url("/containers/{0}/json", container)), True
        )


docker-logs命令跟踪



前面的命令都是request-response的模式,我们再看看不一样的,基于流的docker-logs命令。我们先启动一个容器:


docker run -d bfirsh/reticulate-splines


查看容器列表


# docker ps
CONTAINER ID   IMAGE                       COMMAND                  CREATED          STATUS          PORTS             NAMES
61709b0ed4b8   bfirsh/reticulate-splines   "/usr/local/bin/run.…"   22 seconds ago   Up 21 seconds                     festive_pare


实时跟踪容器运行日志:


# docker logs -f 6170
Reticulating spline 1...
Reticulating spline 2...
....


可以看到reticulate-splines容器就是不停的打印行数数据。可以用下面的代码实现 docker logs 相同的功能:


logs = client.containers.get('61709b0ed4b8').logs(stream=True)
  try:
    while True:
      line = next(logs).decode("utf-8")
      print(line)
  except StopIteration:
    print(f'log stream ended for {container_name}')   


代码执行结果和前面的类似:


# python sample.py
...
Reticulating spline 14...
Reticulating spline 15...
...


logs的实现中返回一个CancellableStream,而不是一个result,利用这个stream,就可以持续的读取输出:


# models/Container
def logs(self, **kwargs):
    return self.client.api.logs(self.id, **kwargs)
# api/continer
def logs(self, container, stdout=True, stderr=True, stream=False,
             timestamps=False, tail='all', since=None, follow=None,
             until=None):
    ...
    url = self._url("/containers/{0}/logs", container)
        res = self._get(url, params=params, stream=stream)
        output = self._get_result(container, stream, res)
        if stream:
            return CancellableStream(output, res)
        else:
            return output


比较特别的是下面对于stream的处理:


# api/client
def _multiplexed_response_stream_helper(self, response):
    """A generator of multiplexed data blocks coming from a response
    stream."""
    # Disable timeout on the underlying socket to prevent
    # Read timed out(s) for long running processes
    socket = self._get_raw_response_socket(response)
    self._disable_socket_timeout(socket)
    while True:
        header = response.raw.read(STREAM_HEADER_SIZE_BYTES)
        if not header:
            break
        _, length = struct.unpack('>BxxxL', header)
        if not length:
            continue
        data = response.raw.read(length)
        if not data:
            break
        yield data
def _disable_socket_timeout(self, socket):
    sockets = [socket, getattr(socket, '_sock', None)]
    for s in sockets:
        if not hasattr(s, 'settimeout'):
            continue
        timeout = -1
        if hasattr(s, 'gettimeout'):
            timeout = s.gettimeout()
        # Don't change the timeout if it is already disabled.
        if timeout is None or timeout == 0.0:
            continue
        s.settimeout(None)


上面代码展示了:


  • 流的读取方式是每次读取STREAM_HEADER_SIZE_BYTES长度的数据作为协议头
  • 协议头结构体格式解压后得到后面的数据包长度
  • 继续读取指定长度的数据包
  • 重复执行上面的数据读取过程
  • 流式读取的时候还需要关闭socket的超时机制,确保流一直保持,知道手动(ctl+c)关闭


attach 则是采用了websocket的实现, 因为我们一般推荐使用exec命令,所以这里简单了解即可:


def _attach_websocket(self, container, params=None):
    url = self._url("/containers/{0}/attach/ws", container)
    req = requests.Request("POST", url, params=self._attach_params(params))
    full_url = req.prepare().url
    full_url = full_url.replace("http://", "ws://", 1)
    full_url = full_url.replace("https://", "wss://", 1)
    return self._create_websocket_connection(full_url)
def _create_websocket_connection(self, url):
    return websocket.create_connection(url)


docker-exec 命令跟踪



docker-exec是我们的重头戏,因为除了可以直接获取docker是输出外,还可以和docker进行交互。先简单回顾一下exec的使用:


# docker exec -it 2075 ping www.weibo.cn
PING www.weibo.cn (123.125.22.241): 56 data bytes
64 bytes from 123.125.22.241: seq=0 ttl=37 time=6.797 ms
64 bytes from 123.125.22.241: seq=1 ttl=37 time=39.279 ms
64 bytes from 123.125.22.241: seq=2 ttl=37 time=29.635 ms
64 bytes from 123.125.22.241: seq=3 ttl=37 time=27.737 ms


上面示例可以用下面代码完全模拟:


result = client.containers.get("2075").exec_run("ping www.weibo.cn", tty=True, stream=True)
try:
  while True:
    line = next(result[1]).decode("utf-8")
    print(line)
except StopIteration:
  print(f'exec stream ended for {container_name}')


使用tty伪装终端和容器进行交互,就是我们最常用的方式了:


# docker exec -it 2075 sh
/ # ls -la
total 64
drwxr-xr-x    1 root     root          4096 Mar 24 13:16 .
drwxr-xr-x    1 root     root          4096 Mar 24 13:16 ..
-rwxr-xr-x    1 root     root             0 Mar 24 13:16 .dockerenv
drwxr-xr-x    2 root     root          4096 Mar  3  2017 bin
drwxr-xr-x    5 root     root           340 Mar 24 13:16 dev
drwxr-xr-x    1 root     root          4096 Mar 24 13:16 etc
drwxr-xr-x    2 root     root          4096 Mar  3  2017 home
drwxr-xr-x    1 root     root          4096 Mar  3  2017 lib
lrwxrwxrwx    1 root     root            12 Mar  3  2017 linuxrc -> /bin/busybox
drwxr-xr-x    5 root     root          4096 Mar  3  2017 media
drwxr-xr-x    2 root     root          4096 Mar  3  2017 mnt
dr-xr-xr-x  156 root     root             0 Mar 24 13:16 proc
drwx------    1 root     root          4096 Mar 25 08:17 root
drwxr-xr-x    2 root     root          4096 Mar  3  2017 run
drwxr-xr-x    2 root     root          4096 Mar  3  2017 sbin
drwxr-xr-x    2 root     root          4096 Mar  3  2017 srv
dr-xr-xr-x   13 root     root             0 Mar 24 13:16 sys
drwxrwxrwt    1 root     root          4096 Mar  3  2017 tmp
drwxr-xr-x    1 root     root          4096 Mar  3  2017 usr
drwxr-xr-x    1 root     root          4096 Mar  3  2017 var
/ # exit


同样这个过程也可以使用docker-py实现:


_, socket = client.containers.get("2075").exec_run("sh", stdin=True, socket=True)
print(socket)
socket._sock.sendall(b"ls -la\n")
try:
  unknown_byte=socket._sock.recv(docker.constants.STREAM_HEADER_SIZE_BYTES)
  print(unknown_byte)
  buffer_size = 4096 # 4 KiB
  data = b''
  while True:
    part = socket._sock.recv(buffer_size)
    data += part
    if len(part) < buffer_size:
      # either 0 or end of data
      break
  print(data.decode("utf8"))
except Exception: 
  pass
socket._sock.send(b"exit\n")


示例演示的过程是:


  • 获取一个已经存在的容器2075
  • 对容器执行exec命令,注意需要开启stdin和socket
  • 向容器发送 ls -lah 展示目录列表
  • 读区socket上的结果。(这里我们偷懒,没有解析头,直接硬取,这样不够健壮)
  • 继续发送 exit 退出容器


程序的输出和上面使用命令方式完全一致,就不在张贴了。进入核心的exec_run函数的实现:


# model/containers
def exec_run(self, cmd, stdout=True, stderr=True, stdin=False, tty=False,
                 privileged=False, user='', detach=False, stream=False,
                 socket=False, environment=None, workdir=None, demux=False):
    resp = self.client.api.exec_create(
            self.id, cmd, stdout=stdout, stderr=stderr, stdin=stdin, tty=tty,
            privileged=privileged, user=user, environment=environment,
            workdir=workdir,
        )
    exec_output = self.client.api.exec_start(
        resp['Id'], detach=detach, tty=tty, stream=stream, socket=socket,
        demux=demux
    )
    if socket or stream:
        return ExecResult(None, exec_output)


主要使用API的exec_create和exec_start两个函数, 先看第一个exec_create函数:


# api/exec_api
def exec_create(self, container, cmd, stdout=True, stderr=True,
                    stdin=False, tty=False, privileged=False, user='',
                    environment=None, workdir=None, detach_keys=None):
    if isinstance(cmd, six.string_types):
        cmd = utils.split_command(cmd)
    if isinstance(environment, dict):
        environment = utils.utils.format_environment(environment)
    data = {
        'Container': container,
        'User': user,
        'Privileged': privileged,
        'Tty': tty,
        'AttachStdin': stdin,
        'AttachStdout': stdout,
        'AttachStderr': stderr,
        'Cmd': cmd,
        'Env': environment,
    }
    if detach_keys:
        data['detachKeys'] = detach_keys
    elif 'detachKeys' in self._general_configs:
        data['detachKeys'] = self._general_configs['detachKeys']
    url = self._url('/containers/{0}/exec', container)
    res = self._post_json(url, data=data)
    return self._result(res, True)


exec_create相对还是比较简单,就是post-json数据到 /containers/{0}/exec 接口。然后是exec_start函数:


def exec_start(self, exec_id, detach=False, tty=False, stream=False,
               socket=False, demux=False):
    # we want opened socket if socket == True
    data = {
        'Tty': tty,
        'Detach': detach
    }
    headers = {} if detach else {
        'Connection': 'Upgrade',
        'Upgrade': 'tcp'
    }
    res = self._post_json(
        self._url('/exec/{0}/start', exec_id),
        headers=headers,
        data=data,
        stream=True
    )
    if detach:
        return self._result(res)
    if socket:
        return self._get_raw_response_socket(res)
    return self._read_from_socket(res, stream, tty=tty, demux=demux)


exec_start是post-json到 /exec/{0}/start 接口,注意这个接口看起来不是到容器,而是到exec。 然后如果socket参数是true则返回socket,可以进行写入;否则仅仅读取数据。


使用curl访问docker-api



docker-engine的REST-api也可以直接使用 curl 访问:


$ curl --unix-socket /var/run/docker.sock -H "Content-Type: application/json" \
  -d '{"Image": "alpine", "Cmd": ["echo", "hello world"]}' \
  -X POST http://localhost/v1.41/containers/create
{"Id":"1c6594faf5","Warnings":null}
$ curl --unix-socket /var/run/docker.sock -X POST http://localhost/v1.41/containers/1c6594faf5/start
$ curl --unix-socket /var/run/docker.sock -X POST http://localhost/v1.41/containers/1c6594faf5/wait
{"StatusCode":0}
$ curl --unix-socket /var/run/docker.sock "http://localhost/v1.41/containers/1c6594faf5/logs?stdout=1"
hello world


可以通过修改/etc/docker/daemon.json更改为http服务方式的api


{
  "debug": true,
  "hosts": ["tcp://192.168.59.3:2376"]
}


然后 curl 命令可以直接访问docker的api


curl http://127.0.0.1:2375/info
curl http://127.0.0.1:2375/version
curl http://127.0.0.1:2375/images/json
curl http://127.0.0.1:2375/images/alpine/json
curl http://127.0.0.1:2375/containers/json
curl http://127.0.0.1:2375/containers/25c5805a06b6/json


小结



利用docker-py可以完全操作docker,这得益docker提供的REST-api操作。同时也发现requests的设计很强大,不仅仅可以用来做http请求,还可以用来做socket请求。学习docker-py后,相信大家对docker的理解一定有那么一点点加深,也希望下面这张图可以帮助你记忆:

image.png

image.png


小技巧



使用 check_resource 装饰器,对函数的参数进行预先处理:


def check_resource(resource_name):
    def decorator(f):
        @functools.wraps(f)
        def wrapped(self, resource_id=None, *args, **kwargs):
            if resource_id is None and kwargs.get(resource_name):
                resource_id = kwargs.pop(resource_name)
            if isinstance(resource_id, dict):
                resource_id = resource_id.get('Id', resource_id.get('ID'))
            if not resource_id:
                raise errors.NullResource(
                    'Resource ID was not provided'
                )
            return f(self, resource_id, *args, **kwargs)
        return wrapped
    return decorator


代码版本比较工具:


from distutils.version import StrictVersion
def compare_version(v1, v2):
    """Compare docker versions
    >>> v1 = '1.9'
    >>> v2 = '1.10'
    >>> compare_version(v1, v2)
    1
    >>> compare_version(v2, v1)
    -1
    >>> compare_version(v2, v2)
    0
    """
    s1 = StrictVersion(v1)
    s2 = StrictVersion(v2)
    if s1 == s2:
        return 0
    elif s1 > s2:
        return -1
    else:
        return 1
def version_lt(v1, v2):
    return compare_version(v1, v2) > 0
def version_gte(v1, v2):
    return not version_lt(v1, v2)


参考链接




目录
相关文章
|
数据库 Docker 容器
Mac 下Docker操作SQLServer数据库
Mac 下Docker操作SQLServer数据库
87 0
|
8月前
|
Docker 容器
【Docker】掌握 Docker 镜像操作:从基础到进阶
【Docker】掌握 Docker 镜像操作:从基础到进阶
|
7月前
|
JavaScript 前端开发 数据安全/隐私保护
阿里云云效操作报错合集之流水线中获取不到CI_COMMIT_REF_NAME变量,导致docker镜像打包失败,什么原因
本合集将整理呈现用户在使用过程中遇到的报错及其对应的解决办法,包括但不限于账户权限设置错误、项目配置不正确、代码提交冲突、构建任务执行失败、测试环境异常、需求流转阻塞等问题。阿里云云效是一站式企业级研发协同和DevOps平台,为企业提供从需求规划、开发、测试、发布到运维、运营的全流程端到端服务和工具支撑,致力于提升企业的研发效能和创新能力。
|
7月前
|
JSON 数据格式 Docker
docker镜像源挂了后操作2024-6
简单操作实现docker镜像依然能顺利拉取。
793 12
|
6月前
|
运维 Ubuntu Shell
阿里云云效操作报错合集之流水线构建Docker镜像时,遇到报错:“error: failed to solve: rpc error: code”,该怎么办
本合集将整理呈现用户在使用过程中遇到的报错及其对应的解决办法,包括但不限于账户权限设置错误、项目配置不正确、代码提交冲突、构建任务执行失败、测试环境异常、需求流转阻塞等问题。阿里云云效是一站式企业级研发协同和DevOps平台,为企业提供从需求规划、开发、测试、发布到运维、运营的全流程端到端服务和工具支撑,致力于提升企业的研发效能和创新能力。
|
7月前
|
缓存 运维 Devops
阿里云云效操作报错合集之在构建过程中,Docker尝试从缓存中获取某个文件(或计算缓存键)时遇到了问题,该如何处理
本合集将整理呈现用户在使用过程中遇到的报错及其对应的解决办法,包括但不限于账户权限设置错误、项目配置不正确、代码提交冲突、构建任务执行失败、测试环境异常、需求流转阻塞等问题。阿里云云效是一站式企业级研发协同和DevOps平台,为企业提供从需求规划、开发、测试、发布到运维、运营的全流程端到端服务和工具支撑,致力于提升企业的研发效能和创新能力。
|
7月前
|
Docker 容器
Docker镜像、容器操作
Docker镜像、容器操作
109 0
|
8月前
|
机器学习/深度学习 人工智能 分布式计算
人工智能平台PAI 操作报错合集之在本地构建easyrec docker镜像时遇到了无法连接docker服务如何解决
阿里云人工智能平台PAI (Platform for Artificial Intelligence) 是阿里云推出的一套全面、易用的机器学习和深度学习平台,旨在帮助企业、开发者和数据科学家快速构建、训练、部署和管理人工智能模型。在使用阿里云人工智能平台PAI进行操作时,可能会遇到各种类型的错误。以下列举了一些常见的报错情况及其可能的原因和解决方法。
|
8月前
|
应用服务中间件 Linux 网络安全
Ubantu docker学习笔记(四)docker容器操作
Ubantu docker学习笔记(四)docker容器操作
|
8月前
|
应用服务中间件 Shell Linux
docker 基本用法-操作镜像
docker 基本用法-操作镜像
740 6

热门文章

最新文章